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ABSTRACT
While software engineers are optimistically adopting crypto-API
misuse detectors (or crypto-detectors) in their software develop-
ment cycles, this momentum must be accompanied by a rigorous
understanding of crypto-detectors’ effectiveness at finding crypto-
API misuses in practice. This demo paper presents the technical
details and usage scenarios of our tool, namely Mutation Analysis
for evaluating Static Crypto-API misuse detectors (MASC). We
developed 12 generalizable, usage based mutation operators and
three mutation scopes, namely Main Scope, Similarity Scope, and
Exhaustive Scope, which can be used to expressively instantiate com-
pilable variants of the crypto-API misuse cases. Using MASC, we
evaluated nine major crypto-detectors, and discovered 19 unique,
undocumented flaws. We designed MASC to be configurable and
user-friendly; a user can configure the parameters to change the
nature of generated mutations. Furthermore, MASC comes with
both Command Line Interface and Web-based front-end, making it
practical for users of different levels of expertise.
Code: https://github.com/Secure-Platforms-Lab-W-M/MASC
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1 INTRODUCTION
Software engineers have been relying on crypto-detectors for decades
to ensure the correct use of cryptographic APIs in the software
and services they create, develop, and maintain [4]. Such crypto-
detectors are ubiquitous in software engineering, as they are in-
tegrated into IDEs (e.g., CogniCrypt plugin for Eclipse IDE [5]),
testing suite of organizations such as Oracle Corporation [6, 12],
and for Continuous Integration/Continuous Deployment (CI/CD)
pipelines [9, 13]. In addition, hosting providers such as GitHub
are formally provisioning such crypto-detectors e.g., GitHub Code
Scan Initiative [7]. In other words, the security of software and ser-
vices are increasingly becoming more reliant on crypto-detectors.
However, we have been relying on manually-curated benchmarks
for evaluating the performance of crypto-detectors, such bench-
marks are known to be incomplete, incorrect, and impractical to
maintain [11]. Therefore, determining the effectiveness of crypto-
detectors from a security-focused perspective requires a reliable and
evolving evaluation technique that can scale with the volume and
diversity of crypto-API and the different patterns of misuse.

We contextualized mutation testing techniques to create the
Mutation Analysis for evaluating Static Crypto-API misuse detec-
tors (MASC) framework. In our original, prototype implementation
of MASC [3], it internally leveraged 12 generalizable, usage-based
mutation operators to instantiate mutations of crypto-API misuse
cases for Java. The mutation operators were designed based on the
design principles of Java Cryptographic Architecture (JCA) [8] and
a threat model that consisted of users of varying skills and inten-
tions (Section 4.1). MASC injects these mutated misuse cases in Java
or Android-based apps at three mutation scopes (injection sites),
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namely Main Scope, Similarity Scope, and Exhaustive Scope, thus
creating mutated applications that contain crypto-API misuse. We
demonstrated the practicality of prototype implementation ofMASC
by evaluating nine crypto-detectors from industry and academia,
and discovered 19 previously undocumented, unknown flaws that
compromise the within-scope soundness of crypto-detectors. The
full details of MASC’s methodology, design considerations, evalu-
ation of crypto-detectors leading to finding novel flaws, practical
impact of found flaws in open source applications (therefore the ap-
plicability of the mutation operators), and discussion of the findings
are available in the original research paper [3].

In this paper, we present a mature implementation of MASC
framework with focus on extensibility, ease of use, and maintain-
ability to the stakeholders of crypto-detectors, such as security
researchers, developers, and users. To elaborate, because of the
newly developed plug-in architecture, MASC users can now create
their own mutation operators that can be easily plugged into MASC,
without diving deep into the existing code base (11𝐾+ source lines
of code). Moreover, whereas the original prototype implementation
of MASC involved semi-automated evaluation of crypto-detectors,
we made MASC’s workflow automated by leveraging the de-facto
SARIF [10] formatted output of crypto-detectors. Furthermore, we
have created a web-based front-end of MASC’s implementation for
the users to reduce the barrier to entry. Finally, we restructured and
refactored the open-source codebase of MASC to increase maintain-
ability and extensibility of MASC, which will make future contribu-
tions and enhancements easier for both developers and open-source
enthusiasts of MASC. With these additions and enhancements, we
hope that the current, open-source implementation of MASC will
be used in finding flaws in, and thus helping to improve, existing
crypto-detectors.
Contribution: We present MASC, a user-friendly framework that
leveragesmutation-testing techniques for evaluating crypto-detectors,
with details of underlying techniques, design considerations, and
improvements. The new, key features of MASC are as follows: Auto-
mated Evaluation of Crypto-detectors: MASC can be used to evaluate
crypto-detectors in an end-to-end automated workflow within the
Main Scope.
Customizable Evaluation of Crypto-detectors: A user can customize
the evaluation of crypto-detectors by specifying the mutation oper-
ators for creating crypto-API misuse instances.
Plug-in Architecture for Custom Operators: MASC helps security
researchers, developers and users, jump right into evaluating crypto-
detectors by creating their own, custom mutation operators that
can be directly plugged-in the Main Scope, without requiring them
to learn and understand about the internal details of MASC.
User-friendly Front-end for End-users: In addition to enhancing the
command line interface of the original prototype implementation,
we create and introduce an open-sourced, web-based front-end
for end-users that can be run locally. The front-end contains an
additional play-test-learn interface, MASC Lab, where stakeholders
can interact with mutation operators and can learn about mutating
crypto-API misuse.
Tool and Data Availability: The prototype implementation of the
MASC framework, scripts and results of evaluating crypto-detectors,
as described in the original paper [3], are available in the MASC
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Figure 1: A conceptual overview of the MASC framework.

//base crypto API misuse
Cipher.getInstance("DES"); // 1
// mutated misuse instances from several mutation operators of MASC
Cipher.getInstance("des"); // 2
Cipher.getInstance("des".toUppercase ()); //3
Cipher.getInstance("DE$S".replace("$","")); // 4
String val = "DES"; Cipher.getInstance(val); // 5

Listing 1: Example crypto-API misuse instances created by MASC

Artifact [1]. Furthermore, the codebase of actively maintained, ma-
ture implementation of MASC is available separately with extensive
documentation and examples [2].

2 OVERVIEW OF MASC
Overall, MASC works by (1) mutating a base crypto API misuse
case to create mutated crypto-API instantiations or mutated misuse
case, (2) seeding or injecting the mutated misuse case in source
code, (3) analyzing both unmutated and mutated source code using
a target crypto-detector, and (4) comparing the outputs of crypto-
detector applied on both base misuse case and mutated misuse
case to identify undetected (not killed) mutated misuse case. The
overview of this process is shown in Figure 1.

Conceptually, MASC contextualizes the traditional mutation test-
ing techniques of SE domain for the evaluation of crypto-detectors,
while introducing crypto-API misuse mutation operators that instan-
tiates variants or expressions of crypto-API misuse. To elaborate,
while mutation operators from the traditional, SE mutation testing
are used to describe operations that either add, modify, or remove
existing source code statement(s), in the context of MASC, crypto-
API mutation operators create expressive instances of crypto-API
misuse independent of any source code or application. As shown
in Listing 1, statement marked //1 is the base misuse case, whereas
statements //2 – //5 are the mutated crypto-misuse cases instanti-
ated by several mutation operators of MASC. We provide the design
considerations and implementation details of MASC’s mutation
operators in Sec. 4.1. These mutated misuse instances are then "in-
jected" or "seeded" in source code, where the injection site depends
on the mutation scopes of MASC, which we detail in Sec. 4.2.

3 DESIGN GOALS
We considered several goals while designing MASC, while leaning
on the experience we gained from the original version.
Diversity of Crypto-APIs (DG1): Effectively evaluating crypto-detectors
requires considering misuse cases of existing crypto-APIs, which is
challenging as crypto-APIs are as vast as the primitives they enable.
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Figure 2: Architecture Overview of the Main Scope of MASC

To address this, the crypto-API mutation operators need to be de-
coupled from the crypto-APIs. Such implementation would mean
that even in the case when new crypto APIs are introduced, MASC
can still create mutated misuse cases as long as the new crypto-APIs
follow existing design principles.
Open to Extension (DG2): While both original and current imple-
mentations ofMASC comewith 12 generalizable mutation operators,
these represent a subset of different expressions of misuse cases.
Hence, MASC should be open to extension by stakeholders so that
they can create their own mutation operators that can be easily
plugged-in to MASC, without needing to modify MASC.
Ease of Evaluating Crypto-detectors (DG3):While the original, semi-
automated implementation of MASC required manual evaluating
the target crypto-detector, such heavy-lifting manual effort can not
be simply expected from end-users. Part of this manual effort was
unavoidable due to the unique, varied outputs produced by crypto-
detectors. However, with the recent focus on using crypto-detectors
with CI/CD pipelines and the introduction of the de-facto SARIF [10]
formatted outputs, it would become possible to not only automate
the entire evaluation process, but also make it customizable.
Adapting to Users (DG4): Finally, MASC should be created in such
a way that it is usable by users of varying skills and in different
environments. For instance, it should be usable as a stand-alone
binary in a windowless server environment as a component, and
as a front-end based software that can leverage the binary of itself.

4 IMPLEMENTATION OF MASC
To satisfy the design goals (DG1–DG4), we implemented MASC
(11𝐾+ effective Java source line of code) following single-respon-
sibility principle across modules, classes, and functions. Note that
while current implementation of MASC inherits the mutation scopes
of the original implementation with internal structural changes,
the bulk of the changes with new features in the current implemen-
tation of MASC are based on theMain Scope. Therefore, we describe
the implementation details of MASC with a focus on Main Scope
in the context of the design goals and provide an overview of the
architecture in Figure 2.
Configuration Manager: To make MASC as flexible as possible,
we decoupled the crypto-API specific parameters from the internal
structure of MASC. As a result, user can specify any crypto-API
along with its necessary parameters through an external configura-
tion file defining the base crypto-APImisuse case. The configuration
file follows a key-value format, as shown in Listing 2. Additionally,
user can specify the mutation operators and scope to be used, along
with other configuration values, thus satisfying DG1.

scope = main
type = StringOperator
outputDir = app/outputs
apiName = javax.crypto.Cipher
# Method call from crypto -API
invocation = getInstance
# Secure parameter to use with crypto -API
secureParam = AES/GCM/NoPadding
# insecure parameter to use with crypto -API
insecureParam = AES
# noise value used with mutation
noise = ~
# variable , class name used to create necessary structures
variableName = cryptoVariable
className = CryptoTest
# name of the app for similarity -scope specific mutation
appName = <Name of the App >

Listing 2: Example configuration file for MASC

Mutation Operator Module: MASC analyzes the specified crypto-
API and uses the values specified by the user (e.g., secure, and
insecure parameters to be used with the API) for creating mutated
crypto-API misuse instances. Internally, the decoupling of crypto-
APIs from MASC is made possible through the use of Java Reflection
basedAPI analysis and Java Source Generation using the Java Poetry
Library (DG1). While both the original and current implementation
of MASC comes with several generalizable mutation operators, the
current implementation of MASC includes an additional plug-in
structure that facilitates creating custom mutation operators and
custom key-value pairs for the configuration file. Both of these can
be done externally, i.e., no modification to source code of MASC
is necessary (DG2). We provide additional details about MASC’s
mutation operators in Section 4.1.
Automated Evaluation Module: The current implementation of
MASC leverages the SARIF formatted output to automate evalua-
tion of crypto-detectors. To make end-to-end analysis automated,
MASC’s can be configured to use crypto-detector specific commands,
such as e.g., compiling a mutated source code for analysis, evalua-
tion stop conditions, command for running crypto-detector, output
directory, and more (DG3–DG4).

Furthermore, MASC is implemented to produce verbose logs.
With the combination of flexible configuration, it is therefore pos-
sible to use the stand-alone binary MASC jar file as a module of
another software. As a proof of concept, we implemented MASC
Web, a python-django based front-end that offers all the functionali-
ties of the MASC (Usage details in Section 5) that uses the binary
jar of MASC as a module (DG4).

4.1 Mutation Operators
We designed generalizable mutation operators by examining the
Java Cryptographic Architecture (JCA) documentation. We identi-
fied two common patterns of crypto-API invocation as follows: (𝑖)
restrictive, where a developer is expected to only instantiate certain
crypto-API objects by providing values from a pre-defined set, e.g.,
Cipher, and (𝑖𝑖) flexible, where the developers implement the be-
havior, e.g.,HostnameVerifier. While defining mutation operators of
these two distinct patterns, we assumed a threat model consisting
of the following types of adversaries:
Benign developer, accidental misuse (T1): A benign developer
who accidentally misuses crypto-API, but attempts to address such
vulnerabilities using a crypto-detector.
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interface IHV extends HostnameVerifier {}
new IHV(){
public boolean verify(String h,SSLSession s)return true ;};

Listing 3: Flexible crypto-API based misuse mutation by MASC

java -jar MASC.jar Cipher.properties

Listing 4: Running MASC CLI with a configuration file

Benign developer, harmful fix (T2): A benign developer who is
trying to address a vulnerability identified by a crypto-detector in
good faith, but ends up introducing a new vulnerability instead.
Evasive developer, harmful fix (T3): A developer who aims to
finish a task as quickly or with low effort (e.g., a contractor), and is
hence attempting to purposefully evade a crypto-detector.

The restrictive operators mutate the restrictive values that ab-
stracts away the crypto-API misuse. For example, the abstraction
can be based on method chaining, changing letter case (JCA is case-
insensitive), and introducing alias variables, as shown in Listing 1.
We implemented 6 mutation operators for restrictive crypto-APIs.
Similarly, for the flexible APIs, we implemented mutation operators
based on object-oriented programming concepts:
• Method overriding is used to create mutations that contain
ineffective security exception statements, irrelevant loops, and/or
ineffective security sensitive return value,

• Class extension is used for implementing or inheriting parent
crypto-API interface or abstract classes respectively, and

• Object Instantiation is for creating anonymous inner class
object from the implemented or inherited classes of crypto-APIs.

We created 6 more conceptual mutation operators based on flexible
crypto-APIs. An example of flexible mutant is shown in Listing 3.

4.2 Mutation Scopes
To emulate vulnerable crypto-API misuse placement by benign and
evasive developers, we designed three mutation scopes to be used
with MASC:
• Main Scope represents the simplest scope, where it seeds mutants
at the beginning of the main method of a simple Java or Android
template app, ensuring reachability.

• Similarity Scope seeds mutants in the source code of an input
application where a similar crypto-API is found. Note that it does
not modify the existing crypto-API, and only appends the said
mutant misuse case

• Exhaustive Scope seeds mutants at all syntactically possible lo-
cations in the target app, such as class definition, conditional
segments, method bodies and anonymous inner class object dec-
larations. This helps evaluate the reachability of the target crypto-
detector.

5 USING MASC
As described previously,MASC has both command line interface and
web-based front-end (MASCWeb, shown in Figure 3). MASC CLI can
be executed by providing a configuration file e.g., Cipher.properties
using the command shown in Listing 4. Similarly, using the MASC
Web, users can do the following, labeled as per Figure 3:
(1) Experiment and learn about crypto-API misuse using MASC Lab,

43

21

5

Figure 3: Web based Front-end of the MASC

(2) Mutate open source applications by uploading the zipped source
code in MASC Engine,

(3) Use custom implemented mutation operators as plugins,
(4) Create and upload configuration files, and
(5) Profile crypto-detectors by analyzing caught and uncaught mu-

tants.
The detailed description of each of these, with example configura-
tion files, and detailed developer documentation is shared in the
open-source repository of MASC [2].

6 FUTUREWORK AND CONCLUSION
We discussed the overview, design goals, implementation details
and usage of MASC, a user-friendly tool for mutation-based evalua-
tion of static crypto-API misuse detectors. While we do not report
any additional crypto-detector evaluation in this demonstration pa-
per, evaluation results of the original implementation of MASC are
available in the original paper [3]. We plan to evaluate additional
crypto-detectors with the current implementation of MASC, and
aim to extend the customization support to the additional scopes,
i.e., exhaustive scope and similarity scope. We hope that the current
implementation of MASC will help crypto-detector stakeholders,
i.e., security researchers, developers and users, to systematically
evaluate crypto-detectors. Furthermore, we envision that that open-
source enthusiasts will augment the mutation operators of MASC
further, empowered by its easy to extend architecture, thus helping
improve crypto-detectors by finding novel flaws.
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