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Abstract—Designing practical security systems for the smart
home is challenging without the knowledge of realistic home
usage. This paper describes the design and implementation of
Hεlion, a framework that generates natural home automation
scenarios by identifying the regularities in user-driven home
automation sequences, which are in turn generated from routines
created by end-users. Our key hypothesis is that smart home
event sequences created by users exhibit inherent semantic
patterns, or naturalness that can be modeled and used to generate
valid and useful scenarios. To evaluate our approach, we first
empirically demonstrate that this naturalness hypothesis holds,
with a corpus of 30,518 home automation events, constructed
from 273 routines collected from 40 users. We then demonstrate
that the scenarios generated by Hεlion seem valid to end-users,
through two studies with 16 external evaluators. We further
demonstrate the usefulness of Hεlion’s scenarios by addressing
the challenge of policy specification, and using Hεlion to generate
17 security/safety policies with minimal effort. We distill 16 key
findings from our results that demonstrate the strengths of our
approach, surprising aspects of home automation, as well as
challenges and opportunities in this rapidly growing domain.

I. INTRODUCTION

The smart home market is driven by the consumer demand
for seamless automation, wherein devices react to the user’s
environment. Popular platforms such as SmartThings [1] and
NEST [2] enable automation through trigger-action programs
known as routines, which help users cause action events
when a trigger condition is satisfied; e.g., when the user gets
home (i.e., trigger) turn the security camera OFF (i.e., action).
Routines are the building blocks of home automation.

Prior research has analyzed routines, and more specifically,
IoT apps published in marketplaces such as the SmartThings
Official Repository [3], to understand the security, safety,
and privacy properties of home automation. For instance,
researchers have analyzed routines to detect the consequences
of chains of routines (e.g., Soteria [4] and IoTMon [5]),
enable contextual integrity (e.g., ContexIoT [6]), provide
provenance information (e.g., ProvThings [7]), and track data
leaks (e.g., Saint [8]). While prior research provides a useful
estimate of potential problems, its findings would be actionable
iff users deploy a specific combination of IoT apps, and
execute them in a particular order. Without this critical insight,
it is difficult to put the findings of prior work into perspective.

More importantly, without considering realistic home au-
tomation usage, designing or evaluating practical systems is
challenging. For instance, consider the problem of specifying
security/safety policies. A researcher creating policies for a
system such as Soteria [4] or IoTGuard [9] must manually for-
mulate use/misuse cases for smart home devices. This manual

approach (1) requires significant effort, (2) is limited by the
ability of the researcher to enumerate scenarios, and (3) may
not reflect the use/misuse scenarios that may naturally occur in
end-user homes. Unfortunately, we have no recourse other than
this approach for policy specification, as we do not know what
scenarios may realistically occur in end-user homes. For this
same reason, security systems built for smart homes are often
evaluated with random events as input (e.g., ContexIoT [6] and
IoTSAN [10]), which may not reflect the practical performance
of the system. Thus, we observe a critical gap that limits
the practicality of research in smart home security: the lack
of natural home automation scenarios, i.e., event sequences
likely to occur in end-user homes. Such scenarios can be
effective for addressing critical design/deployment problems,
i.e., they can be analyzed to discover safety, security, or privacy
issues for policy specification, or executed as test cases to
evaluate the security, performance, or usability of the system.

Consider this scenario generated during our policy specifi-
cation exercise (Sec. VIII):

user comes home → it is evening → gas range turns ON
→ speaker turns ON → motion is detected

→ security camera takes picture.

In this scenario, given that the user has arrived home, most
events that follow are realistic, e.g., turning the gas range ON
or motion being sensed. However, we also see a subtle privacy
violation: while the camera is configured to take pictures for
home monitoring, in this particular instance, the user is the
most likely cause of the motion, and hence the subject of the
unintended picture. This privacy violation motivates the policy
of turning the camera OFF when the user is at home.

The availability of such scenarios would enable and simplify
the design and evaluation of practical security/safety systems
for the smart home. The question is, how would we obtain such
scenarios? A straightforward source would be real execution
traces from end-user homes. However, execution traces are
significantly noisy and privacy invasive, as we discuss in detail
in Section II-B. Therefore, we consider a practical alternative:
automatically generating synthetic but realistic scenarios.

The key argument in this paper is that natural scenarios
may be generated by learning the regularities in user-driven
home automation, i.e., automation resulting from routines that
end-users configure through interactive user interfaces (UIs)
provided by platforms (e.g., the SmartThings [1]) or third-
parties (e.g., Yeti [11] and Yonomi [12]). User-driven routines
are a realization of the “end-user programming” paradigm in
smart homes, as users can assign triggers and actions without



writing a single line of code. Users are empowered to craft
their own routines that directly represent their requirements,
without relying on developer-defined IoT apps. In fact, IoT
apps may not represent all user requirements, i.e., out of the
273 routines (233 unique) created by our 40 users (Sec. IV-A),
more than 42.49% were not represented by any of the 187
SmartThings marketplace apps [3]. This mismatch between
developer-provided apps and user needs motivates our focus
on user-driven routines for modeling home automation.

We propose a novel approach that uses statistical language
modeling [13] to identify the regularities in user-driven home
automation, and leverages them to generate scenarios. Our
approach builds upon a key result from the domain of Natural
Language Processing (NLP), which states that while a natural
language such as English may be extremely expressive in
theory, in practice, the use of the language by people is
“natural”, i.e., generally exhibits certain patterns and is, thus,
predictable. This result was extended by Hindle et al., who
demonstrated that source code, just like natural language, is the
result of human effort, and thus, contains patterns that make it
predictable [14]. Given that user-driven routines are effectively
expressions of programs created by humans, we can leverage
Hindle et al.’s insight to predict home automation scenarios.
Specifically, we define the notion of a home automation
sequence, which is the ordered set of routines that the user
has scheduled to execute in their home, analogous to functions
invoked in a program, and test the following core hypothesis:

Home automation sequences created by humans are implicitly
natural, i.e., they exhibit semantic patterns that make them
predictable. Thus, we can use statistical language modeling
to analyze corpora of sequences and predict useful home
automation scenarios that enable the design and evaluation of
security systems.

Contributions: We present a framework that enables a nat-
ural perspective for Home automation security EvaLuatION
(Hεlion). We initialize Hεlion with routines collected from
users. Moreover, we observe that the order in which routines
execute may have different, even contradictory, security impli-
cations. Hence, for a precise characterization, Hεlion obtains
clues from users about the potential execution of individual
routines, i.e., execution indicators, and uses them to sched-
ule routines, leading to ordered home automation sequences.
Hεlion uses the n-gram language model to learn patterns from
such sequences, i.e., obtains a “natural perspective” of home
automation. Using this model, Hεlion generates scenarios that
are realistic, i.e., reasonably likely to occur in a user’s home.
These scenarios help us identify real safety/security/privacy
problems, a prime example being the privacy violation sce-
nario presented earlier, which was generated by Hεlion. Our
contributions are summarized as follows:

• Design of Hεlion: We contextualize statistical language
modeling to the domain of home automation, and the
problem of generating natural and useful scenarios. Several
aspects of this design are novel: (1) its focus on user-driven

routines, (2) abstractions such as execution indicators, and
(3) the use of model flavors for generating diverse scenarios.

• Naturalness of home automation: We empirically test
the naturalness hypothesis over a home automation corpus
(called HOME) consisting of 30,518 events, split among
event sequences from 40 users, created using 273 routines,
and show that home automation is indeed natural, even more
so than natural language and software corpora.

• Validity of predicted scenarios: We demonstrate the va-
lidity of our scenarios from the perspective of end-users
in two studies with 16 additional external evaluators, and
perform a third study to demonstrate the effectiveness of our
predictive approach at the task of generating scenarios, over
the baseline of using a formal (i.e., graph-based) model.

• Usefulness of scenarios: We demonstrate the usefulness of
the scenarios by using Hεlion to generate security and safety
policies for home automation. Hεlion’s approach automates
the use/misuse case analysis workflow by eliminating the
need to imagine scenarios, and reduces manual effort rela-
tive to a formal graph-based model. We semi-automatically
discover 27 unsafe scenarios that motivate 17 policies.
Finally, we distill 16 key findings (F1→F16) from our

results that demonstrate the strengths of Hεlion, surprising
aspects of home automation, as well as challenges and op-
portunities in this exciting domain.

II. MOTIVATION AND BACKGROUND

The goal of this paper is to model home automation and
generate realistic scenarios that may be useful at every step in
the design and evaluation of security, safety, and privacy sys-
tems for the smart home. For a tractable analysis, we focus on
using scenarios to address one of the most important problems
in the design of security systems: policy specification.

A. Motivating Example: Effective Policy Specification

A common trait of the home security/safety systems pro-
posed by prior work [15], [8], [4], [10], [5], [16] is their
reliance on policies for analysis or enforcement, which re-
searchers generally specify based on their understanding of
the home. For example, Soteria [4] has a policy which states
that “the refrigerator and security system must always be on”,
which is motivated by the safety and security consequences
of the two devices being OFF. Moreover, these policies are
often inherited by future research, e.g., IoTSAN [10] and
IoTGuard [9] use and extend Soteria’s policies. Thus, effective
policy specification is critical for the design of current and
future systems. This 2-part example illustrates a gap in the
process of policy specification that scenarios can address:

Example Part 1 – Manual approach (status quo): Consider
Alice, a security researcher who is building a smart home
security system. Alice relies on use/misuse-case requirements
engineering (e.g., as in prior work [4], [9]) to specify the
policies for this system, a process that consists of three steps:
Step 1: Recognize Assets. Alice comes up with a list of assets
she cares about, e.g., home states that may have safety/security
implications, such as the user being away, or a fire alarm.
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Fig. 1. The subjective and tedious task of imagining use/misuse cases
can be replaced by a semi-automated approach of inspecting natural
scenarios, for practical policy specification.

Step 2: Imagine use/misuse cases. Alice uses her domain
knowledge to come up with a set of home automation use
and misuse cases, involving devices as well as environmental
factors in the smart home. Assessing what behavior constitutes
use or misuse is often contextual, i.e., recall the example
used in Sec. I; the camera taking a picture is normal and
necessary for security when the user is away, but a privacy
violation when the user is home. Enumerating all potential
contexts, relying solely on imagination, is a hard problem.
Step 3: Create Policies. Alice transforms the use/misuse cases
to functional requirements or constraints, i.e., policies.

Generating the use and misuse cases manually (Step 2) is
hard, and costs Alice a tremendous effort as well. We show
how scenarios can make Alice’s task significantly easier.

Example Part 2 – Semi-automatic policy specification using
scenarios: As shown in Fig. 1, we intend to remove Step 2, i.e.,
instead of imagining use/misuse cases, Alice analyzes realistic
scenarios to create policies. Alice uses a simple state model
to track the states of different assets in the home as each event
in a test scenario plays out. Only when an interesting event
occurs (e.g., the camera takes a picture), does Alice interrupt
the scenario and inspect the state of the home. Alice creates
a policy if the inspected state indicates a safety, security, or
privacy problem ( e.g., the camera taking a picture when the
user is home). That is, we reduce the problem from manually
specifying use/misuse cases, to simply inspecting a few home
states when an interesting event occurs. Moreover, if the
scenarios are natural, i.e., reasonably likely in the wild, then
the resultant policies can be said to be less subjective.

B. Realistic Scenarios vs. Real Execution Traces

One approach to obtain natural scenarios would be to extract
them directly from execution traces of user homes (e.g., the
CASAS project [17]). Indeed, our initial attempt involved
executing routines with real devices and platforms to collect
traces. However, we observed that the traces often contained
noise, i.e., superfluous events arising from intricacies in the
platform/device implementation. Given the fragmentation of
smart home ecosystem, filtering such noise may be infeasible.
Thus, real traces may not exhibit qualitative patterns agnostic
to platform/device brands, which are necessary for understand-
ing the general regularities in home automation.

Another concern with real traces is privacy. At a time
when privacy concerns are already a roadblock in smart home
adoption [18], [19], collecting traces from homes would be

extremely invasive, as they are not mere preferences, but
evidence of user activity. In comparison, synthetic scenarios
grounded in user expectations would be significantly less inva-
sive. Indeed, we later demonstrate the feasibility of generating
realistic scenarios that seem valid to end-users (Sec. VII),
without ever looking at exact traces from user homes.

Now that we understand how Alice can benefit from syn-
thetically generated but realistic scenarios, the key question is:
how can we generate natural home automation scenarios?

C. Intuition: User-driven Home Automation is Natural

One way to generate natural scenarios is to build a model
that can predict events that are probable in the future, given the
events that have already occurred (i.e., the history). Statistical
language models (LMs) enable exactly this type of prediction.

Our core hypothesis (Sec. I) that would enable us to use
LMs in our context is an extension of one of the key arguments
in NLP: while languages themselves are tremendously expres-
sive, their actual use by humans is often repetitive enough to
be predictable. For example, given the sentence “You only live
<missing word>.”, it is easy to guess that the missing word
should be “once”, despite the fact that syntactically, “barely”,
“infinitely” or any other adverb would be just as correct. A LM
trained on a corpus of common “utterances” in English would
make the same prediction, based on the statistical probability
of the word “once” given the preceding phrase.

In a similar vein, home automation events generally follow
predictable patterns. Imagine the following sequence of events
in a room where a light is controlled by a motion sensor:
“sensor detects motion, lights are turned ON, motion is not
detected for a while, <missing event>”. Intuitively, the con-
cluding event would most likely be “lights turn OFF”. We use
LMs to leverage this naturalness and make useful predictions.

D. Background: Statistical Language Modeling

This section provides the intuition behind statistical LMs,
and specifically, the n-gram LM approach. A more mathemat-
ical discussion of these concepts can be found in Appendix E.

A LM measures the probability of a sentence s = wm
1 =

w1w2...wm, given the probabilities of the individual words in
the sentence (i.e., wm

1 ), as previously estimated from a training
corpus. This ability enables prediction, i.e., of predicting the
next most probable word that can follow a sequence of words.
In the context of modeling smart home routines, we define a
“sentence” to represent a sequence of home automation events,
wherein the “words” (a.k.a tokens) are smart home events.

The n-gram language model: In practice, however, there
are often too many unique sequences to properly estimate
the probability of tokens given long histories, even with large
training corpora. Thus, we make use of the n-gram LM, which
assumes the Markov property, i.e., instead of computing the
conditional probability given an entire history, we can approx-
imate it by considering only a few tokens from the past. This
practical approach is valued in NLP and software analysis,
as it enhances the model’s predictive power by providing it
with more examples to condition token probabilities, i.e., as



execution 
indicators scenarios

Informed
Scheduling

n-gram 
Language 
Modeling

home 
automation 
sequences

user-driven
routines Predicting 

Scenarios
model

H  lion✏
<latexit sha1_base64="hD+rkJlyff+KGeWOsoJ+HpAm+zo=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2FZoY9lsJ+3SzSbsbpQS+j+8eFDEq//Fm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnG1zO/84hK81jemUmCfkSHkoecUWOlh6wXhKSHieYiltN+ueJW3TnIKvFyUoEczX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/OopObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia88jMuk9SgZItFYSqIicksAjLgCpkRE0soU9zeStiIKsqMDapkQ/CWX14l7VrVu6jWbuuVRj2PowgncArn4MElNOAGmtACBgqe4RXenCfnxXl3PhatBSefOYY/cD5/AKIWko4=</latexit>

End-users Security
Researchers

Platform
Vendors

Device 
manufacturers

Tools for using scenarios

scenarios

actionable
outcomes

Snapshot 
Module

Execution
Engine

Policy 
Checker

Stakeholders

Fig. 2. An overview of the Hεlion framework, which models home
automation sequences to construct natural scenarios. Stakeholders use
tools that analyze or execute scenarios to obtain actionable outcomes.

shorter sequences are more likely to occur in training corpora.
Moreover, n-gram LMs may be an even better fit for analyzing
home automation event sequences, due to the localized causal
relationships between triggers and actions (and also event
chains [20]), which are more relevant than the presumably
weaker correlations with events from the distant past.

Evaluating the naturalness of a corpus: Our approach of
modeling home automation using n-gram LMs will be effec-
tive only if our naturalness hypothesis holds. Thus, we must
answer the question: Are user-driven home automation event
sequences natural? The naturalness of token sequences can
be measured according to a trained model’s perplexity (or its
log-transformed version, cross-entropy) on unseen data, which
is a standard metric for assessing the viability of statistical
language modeling for modeling any corpora. That is, a model
will be “perplexed” upon observing a new sequence if it finds
the sequence surprising, i.e., unlike any sequence observed in
the corpora. If the perplexity of a model built on corpora from
a domain is low, it means that the domain exhibits naturalness,
and that the model can identify regularities in the corpora, and
predict events from that domain with significant confidence.

III. THE HεLION FRAMEWORK

Figure 2 shows Hεlion, a data-driven framework that models
the regularities of user-driven home automation, generates
natural home automation scenarios, and provides stakeholders
with tools to use the scenarios and obtain actionable outcomes.
As shown in the figure, the process begins by collecting user-
driven routines, as well as the corresponding execution indica-
tors, i.e., clues about when or how frequently the routines may
be scheduled to execute, from end-users (Sec. III-B). Hεlion
transforms the routines and the corresponding execution indi-
cators into home automation event sequences, using a process
called informed scheduling (Sec. III-C). The resulting event
sequences serve as a training data set that is represented using
n-gram language modeling (Sec. III-D). Hεlion’s language
model captures the patterns among the sequences, and can
confidently generate new natural events that follow a home’s
previous history (Sec. III-E), forming a scenario.

We envision a set of tools – developed to leverage Hεlion’s
scenarios – that enable key applications for several stakehold-
ers. In the scope of this paper, we explore our motivating

example of policy specification (Sec. II-A), by developing a
tool called the snapshot module. This module allows security
researchers to examine scenarios by capturing an evolving
“snapshot” of the home for analysis, for every successive
event in a scenario (see Sec. VIII for details). In addition
to our main focus of policy specification, we also prototype
an execution engine (see Sec. VIII), and discuss its use by
platform and device vendors to test their products under
realistic scenarios, with real devices (Sec. VIII-C). Finally,
while we do not explore this aspect, Hεlion’s scenarios may be
used with existing policy checkers [4], [10] to help end-users
identify potential problems in their homes. We now describe
the general threat model for Hεlion’s scenarios and use cases,
followed by the design of its individual components.

A. Threat Model
Hεlion generates scenarios that denote realistic behavior of

the smart home. However, realistic scenarios may lead the
system into an unsafe state (i.e., in terms of the access control
safety problem [21]). In most cases, an unsafe state may
be reached both (1) accidentally (e.g., similar to accidental
data disclosure [22] or safety violations [9]), or (2) due to a
malicious adversary. Consider this example from Sec. VIII:
a gas range turns ON during a fire, which may make matters
worse (e.g., cause an explosion). Such an event may occur
accidentally, e.g., if the range is set to turn ON when the user
wakes up (e.g., to heat water), which happens to be when there
is a fire. However, such an event may also be triggered by an
adversary who can commandeer global state variables such
as “awake/asleep”, or “home/away”. Indeed, such variables
can be changed via compromised low-security devices, to
indirectly control high-security devices such as cameras, as
recently demonstrated by Kafle et al. [16]. Finally, we also
attempt to generate unnatural (i.e., highly unlikely) scenarios
to mimic accidental or adversarial circumstances (Sec. III-E).

The general threat model described above applies when
scenarios are analyzed, e.g., for the policy specification use
case. However, we also envision adversary models that are
specific to the use case, particularly when the scenarios are
executed by stakeholders. For instance, a platform vendor
may use scenarios to dynamically test the behavior of partner
devices under realistic circumstances, in which case, the
partner devices may be assumed to be the adversary (i.e., they
may violate the platform’s security goals). On the contrary, a
device/app developer may want to dynamically test their own
product under natural scenarios, in order to weed out acci-
dental violations of their own security/safety/privacy claims.
Hεlion may enable several such use cases that improve the
overall health of the home automation ecosystem.

B. Collecting User-driven Routines
Hεlion deviates from prior work as it is grounded in

user-driven routines that reflect user requirements directly, as
opposed to IoT apps that may only represent the developers’
perspective. Thus, a critical step in instantiating Hεlion is the
collection and representation of the events that form routines
into semantically meaningful tokens suitable for modeling.



1. Collecting routines from users: To collect routines from
users, we use a survey methodology that is conceptually
similar to prior work by Ur et al. [23]. We thoroughly describe
this methodology in Sec. IV-A. The raw data collected from
the surveyed users consists of two components: (i) routines
specified in a structured natural language format, and (ii) exe-
cution indicators, i.e., clues for when these routines typically
execute. For modeling, the natural language routines must be
converted into semantically equivalent tokens. We illustrate
this process with the following (raw) routine from our dataset:

IF the motion is detected THEN camera takes a picture

2. Representing smart home events as tokens: In the context
of this paper, tokens are home automation events parsed from
structured natural language routines. An event can denote a
change in the state of a device (e.g., door locked) or the home
(e.g., the user is away). To model the varying attributes of
home automation events, we express our tokens as ordered
information lists called tuples. The design of the tokens must
strike a balance between encoding enough salient information
to be descriptive, while still representing semantically similar
events in equivalent tokens to capture meaningful patterns in
the data. We define Hεlion’s home automation event token as:

ei :=< devicei, attributei, actioni >

where devicei represents the device (e.g., door lock, camera),
the attributei corresponds to one of a predefined set of device
attributes (e.g., the lock attribute for the door lock, which can
take the values LOCKED/UNLOCKED), and actioni represents
the change of state, and hence, the current value of attributei.
Using this design, the example routine discussed previously
(i.e., the motion sensor/camera) would be tokenized as:

< motion sensor, motion, DETECTED>,
< security camera, image, TAKE>1

Note that to represent an event that causes a change to the
overall state of the home (e.g., “If the user is home”), we do
not use the devicei field, but only the attribute (i.e., “home”)
and the specific change (i.e., HOME or AWAY), to generate a
token as follows: < φ, locationMode,HOME>.

Of the several considerations that went into the design of
this token, the most important was the decision to exclude a
classification of an event as a trigger or an action. This choice
is logical as our goal is to model home automation “event
sequences” rather than a set of routines, and several events
can be triggers or actions, depending on where they are used
in a routine; e.g., the trigger condition “if a picture is taken”,
and the event resulting from the action “take a picture”, deal
with the same device, attribute, and action, and hence the same
event. This decision prevents unnecessary sparseness in the
data, as including a trigger/action classification in the token
would generate two separate tokens for the same event.

C. Generating Event Sequences with Informed Scheduling

Hεlion transforms the tokenized routines specified by a
particular user into a home automation event sequence, i.e., an

1We use terminology from the SmartThings capabilities reference [24].

approximate ordered representation of how the routines would
execute in the user’s home. This importance of order is ap-
parent in natural language, i.e., while single words carry with
them isolated meaning, words combined into a sentence with a
specific, intentional, ordering form a more precise, collective,
meaning. The same can be said about home automation, i.e.,
where events are like words in a sentence whose order is bound
to affect the “meaning” (i.e., implications) of the sequence.
Consider a simple sequence that illustrates this point:

motion detected → camera takes picture
Intuitively, we can interpret this sequence to mean that that the
camera takes a picture because motion is detected. However, if
the order was reversed, the sequence would not have a logical
meaning. Thus, scheduling routines in the right (or best-effort)
order is important for generating home automation sequences.
The question is: How can we obtain this order?

1. Introduction to Execution Indicators: We propose a novel
abstraction for users to stipulate the approximate order in
which routines may execute, i.e., routine-specific execution
indicators. We exploit the possibility that end-users have some
intuition regarding when certain routines execute, based on
when certain device or environmental events may generally oc-
cur. For instance, blinds are usually opened in the morning, and
closed at night. As a result, a user may order a routine triggered
by the opening of the blinds before another triggered by their
closing. Similarly, users may be able to describe when they
perform certain personal tasks which trigger home automation,
i.e., when they come home, go to work, bed, cook, or do
laundry. Execution indicators allow us to capture such factors,
which we then leverage to schedule routines to create home
automation sequences. This is why we define the approach as
informed scheduling, as the scheduling mechanism is informed
by the user’s understanding of their own home use.

2. Specifying Execution Indicators, Informed Scheduling:
Execution indicators constitute the time and frequency of
the potential execution of a routine. As users may not be
able to specify precise values, we allow users to pick broad
ranges of values organized into three types: (1) the time-range
indicator (e.g., early morning, noon, and night), (2) the day-
range indicator (e.g., mostly on weekdays, and mostly on
weekends), and (3) the frequency indicator (e.g., many times
a day, few times a day, few times a month). As mentioned
earlier execution indicators are collected from users for each
routine during the data collection survey (see Sec. IV-A). We
then use these execution indicators to generate a month-long
time-series for each user, where each routine may occupy one
or more one-hour time-slots (i.e., depending on frequency),
using the following algorithm for informed scheduling:

We initialize a month-long time-series, with hourly slots
that can hold routines. We first place the routines triggered
at specific times (e.g., at 8AM, open the blinds) as defined.
For each remaining (i.e., un-placed) routine, we identify the
potential slots for placement, based on its time-range indicator.
The frequency indicator of the routine determines how many
instances of the routine to uniformly distribute among those



slots. This distribution is also adjusted, based on the day-
range indicator, i.e., skewed in favor of weekdays or weekends.
For the few routines without execution indicators (i.e., when
users are unsure), we randomly distribute them throughout the
remaining slots in the month. Finally, once all the routines have
been scheduled in the time series, we extract the ordered set
of routines from the time series as the execution sequence.

We later empirically demonstrate that users can confidently
supply execution indicators for most routines, only being
unsure for generally unpredictable events such as CO leaks
(Sec. IV). Accurately scheduling all possible routines is a
broader research challenge that is beyond the scope of this
paper, as we discuss in Section X.

D. Modeling Event Sequences

Hεlion uses the n-gram model to learn the regularities in
user-driven home automation sequences, as described previ-
ously in Sec. II-D. This section describes certain intricacies
that affect the performance of the model.

1. Why do we need n≥3 ?: Recall that when estimating
the probability of a sequence of length n, the n-gram model
computes the probability of the nth token appearing after
the n − 1 previous tokens (i.e., the history). The intuition
behind looking back at the n − 1 events is that they provide
the context as to why the nth event is being scheduled.
Given this intuition, one thing is clear: when choosing n for
modeling home automation sequences, we can rule out values
of n < 3. That is, n = 1 will only estimate the probability of
individual events, completely ignoring the context. Choosing
n = 2 is only slightly better, as it may mostly capture
simple relationships that are already observable from data,
i.e., trigger-action routines we collect from users. Only with
larger values of n, i.e., n ≥ 3, the model can learn non-
obvious regularities in home automation corpora. To illustrate
this point, consider the following sequence whose probability
is being estimated using a 4-gram model, i.e., n = 4:

user comes home → lights ON → it is evening → door locks.

Here, the factors such as the user being home, the lights
being ON and the time of the day being the evening provide
the context for the occurrence of the next event, i.e., the
locking of the door. As a result, examining the last three
events certainly helps. However, there is a caveat: considering
too much of the event history (i.e., a very large n) may actually
hurt the predictive power of the model. That is, an event
that occurred earlier during the day (e.g., the user going to
work) would likely not share any semantic relationship to the
given sequence, and hence, would not really encapsulate any
regularities. Moreover, longer sequences may be relatively
uncommon in the wild, even if they are realistic and useful
for uncovering serious security/safety flaws. As a result,
the choice of n directly impacts the ability of the model to
capture the existing relationships between events in the corpus,
especially if they belong to the same, high-level, user-activity.

2. The need for smoothing: Selecting n ≥ 3 may seem to
intuitively lead to a better model, however, for higher orders

of n there will inherently be fewer sequences to learn from,
as longer sequences are often unique. That is, the sequence:

the user leaves the home → the door locks
may often occur in a corpus, whereas the sequence:

user leaves the home → door locks → motion is detected
is likely to be less common. This leads to a data sparsity
problem, wherein it is likely that a history queried during
prediction may have not been observed in a training corpus.
As a result, a naive model will be unable to predict the next
event, if this entire history is not present in the training corpus,
even if it may have seen subsequences of this history (e.g.,
user leaving & door locking). We empirically demonstrate
this lack of prediction in our comparison with a formal
graph-based baseline (Sec. VII-C). To allow the LM to
assign probabilities to previously un-observed sequences, and
hence predict higher-order n-grams with sufficient statistical
rigor, we rely on smoothing [25]. Smoothing is a well-known
technique in NLP where the model assigns some probability
distribution to rare or unobserved sequences. We consider
two smoothing methods: (1) backoff and (2) interpolation.
At a high level, backoff smoothing techniques simply revert
to predictions based on lower order n-grams when histories
of higher order are unobserved. Conversely, interpolation
combines token probabilities for lower-order n-grams when
making predictions. In our instantiation of Hεlion, we elected
to use interpolated n-grams due to their demonstrated ability
to perform well with lower-order (i.e., 3-4 gram) models [25].

E. Generating Expressive Scenarios for Security

Hεlion generates scenarios by treating the model as a
sequence generator that can produce an arbitrarily long series
of events. That is, given a history, the n-gram model examines
the previous n−1 events, and predicts the next most probable
event, i.e., the subsequence provided by a majority of the users
(see Appendix E for details). The newly predicted event now
becomes a part of the history for the next prediction. We can
continue these predictions to get arbitrarily long scenarios.

Our threat model (Sec. III-A) describes how scenarios may
be interpreted for security policy specification, i.e., as realistic
event sequences that are reasonably likely to occur in end-
user homes, but which may indicate unsafe situations, whether
accidentally or adversarially triggered. However, we also need
to generate scenarios that denote unnatural situations. For
instance, when specifying policies (Sec. II-A), Alice also needs
highly unlikely scenarios that demonstrate stress tests, or rare
but unsafe situations. To support such usage, Hεlion can be
configured to generate two flavors of scenarios:

1. The up flavor, realistic scenarios: This flavor is the
default, i.e., where our model generates highly probable event
sequences, given a history using the natural probability distri-
bution over tokens in the training corpus.

2. The down flavor, unrealistic scenarios: The down flavor
corresponds to an unnatural distribution over tokens, i.e.,
Hεlion’s LM generates down scenarios by sorting the model’s
most probable token predictions given some history, and then



reversing this order, such that the most improbable token is
given by the model as the prediction. The down scenarios may
be interpreted as a system under constant attack, or where all
devices are simultaneously malfunctioning.

IV. DATA COLLECTION AND INITIAL FINDINGS

This section describes our data collection methodology,
approach for constructing the HOME corpus consisting of
home automation sequences for use with Hεlion, and important
findings that can be directly gleaned from the data (F1→F5).

Data Availability and IRB Approval: All our user studies
were performed with IRB approval. Further, we plan to release
our code for Hεlion and anonymized datasets upon publication.

A. Methodology for Collecting Data from Users

We used a survey methodology for collecting data for
constructing the HOME corpus. The 40 users surveyed were
generally from the Computer Science (CS) academic popu-
lation: 37 were current graduate and undergraduate students,
and 3 had PhDs. The majority owned at least one smart home
device (24 or 60%), while a significant minority had created
routines before (17 or 42.5%). To make the task of specifying
routines and indicators easier, we split the survey into 3 steps:

1. Selecting devices: First, participants selected devices that
they could envision (or already have) in their smart home. To
enable this step, we provided the participants with a broad
device list consisting of 70 unique types of devices available
in the market. We constructed this list using resources such
as websites and mobile apps of all the device partners of the
popular Samsung SmartThings [26] and Google NEST [27],
popular technology websites, and technology forums. Fig. 4
in Appendix A shows our device selection screen.

2. Creating routines: After selecting devices, the participants
were given a short tutorial on routines, and asked to create one
or more routines using the devices that they had previously
selected, along with general smart home variables such as the
user being home/away, temperature, and time. We asked the
participants to provide triggers and actions in a plain English
text to allow them to express any functionality desired without
enforcing any artificial constraints.

We provided an interactive form for creating routines (Fig. 6
in Appendix A). We also provided functional information
about devices (e.g., the “lock” attribute for the door lock) to
help participants focus more on the task of creating routines
than imagining device functions (Fig. 5 in Appendix A). To
enable this approach, we created a device-attribute map by
systematically assigning one or more of the 110 attributes
that we obtained from existing platforms (i.e., NEST [27] and
SmartThings [26]) to each of our 70 devices.

3. Specifying Execution Indicators: After creating rou-
tines, participants specified the time-range, day-range and
frequency indicators for the routines they created (Fig. 7→ 9 in
Appendix A). Participants could select from predetermined
ranges, indicate “anytime” for routines that could occur at

any time (i.e., with respect to the time-range and day-range), or
“not sure” if they were unable to specify. Additionally, we also
collected information that may assist in understanding user-
driven home automation (see Fig. 10→ 13 in Appendix A).

B. Constructing the HOME Corpus

We transformed the routines from plain English into an
intermediate trigger-action format, and then tokens, using
the syntax described in Sec. III-B. We also considered two
additional situations when tokenizing: (1) if the trigger/action
consisted of a conjunction of events, we combined the events
into a single token (in the alphabetical order by device), as
those events would be expected to execute simultaneously,
and (2) for attributes with continuous values (e.g., temper-
ature), we abstracted the user-provided values into ranges
(e.g., low, medium, or high), to create semantically unique
tokens. Two authors independently verified the correctness
of the tokens. Finally, we constructed a month-long home
automation event sequence for each participant using informed
scheduling (Sec. III-C), creating the HOME corpus.

C. Initial Findings from Survey Data

The HOME corpus consists of 30,518 home automation
events, from 40 month-long sequences (i.e., 40 users), gen-
erated from 273 routines (233 unique) and their execution
indicators. Our direct analysis of the survey data resulted in
the following findings:
Finding 1 (F1): Routines are important to users. Moreover,
users leverage most available devices for creating routines.
When asked how important routines were to them, 4 users or
10% indicated that routines were “very important”, 20 or 50%
indicated “important”, while 16 or 40% indicated “somewhat
important”. None indicated that routines were unimportant.

Further, our participants used 61/70 devices (or 87.14%) in
at least one routine. Devices related to lighting and temperature
control were the most popular for automation (i.e., selected
by 23 and 21 users respectively), closely followed by security
devices such as cameras. This finding indicates a strong user
preference for integrating device functions via routines.
Finding 2 (F2): SmartApps do not represent a significant
number of user-driven routines. Out of the 233 unique
routines created by our 40 end-users, only 134 or 57.51%
could be represented by SmartApps from the SmartThings
market [3], i.e., 42.49% were not. For instance, the following
user-driven routine was not represented by any SmartApp: IF
the doorbell rings THEN turn the security camera ON. This
routine represents a straightforward use-case, i.e., it ensures
that the camera stays OFF for most of the time the user is home
(for privacy), but turns ON when significant events happen,
such as when someone is at the door. Finally, only 40/187
SmartApps or 21.39% accounted for the represented routines,
i.e., our users would potentially not use the remaining 78.6%.
Finding 3 (F3): Users indicate a strong preference for
controlling/creating their own routines. Most users (32 or
80%) indicated personal requirements as their source of ideas



TABLE I
SELECTION OF SPECIFIC RANGES, “ANYTIME”, OR “NOT SURE”,

FOR EXECUTION INDICATORS, BY NUMBER OF ROUTINES.

Execution Indicator Specific Range Anytime Not Sure
Time-range 155 (56.78%) 107 (39.2%) 11 (4.02%)
Frequency 256 (93.77%) 0 17 (6.23%)
Day-range 59 (21.61%) 186 (68.13%) 28 (10.26%)

for creating routines Moreover, when asked about their pref-
erence for vendor-controlled vs user-controlled automation,
most users (20 or 50%) preferred a combination, a significant
minority (17 or 42.5%) preferred a purely user-controlled
setup, whereas only 3 (or 7.5%) preferred full vendor control.
Finding 4 (F4): Users may perceive any device as security
sensitive, based on the context. We asked users to select
devices (out of 70) they considered to lead to harm if compro-
mised or malfunctioning (i.e., are security/safety-sensitive). As
expected, the security/safety-focused devices were primarily
selected, such as the security alarm (36 users), door lock (35),
or the camera (35). More surprisingly, every single device
was marked as sensitive by at least 3 users; i.e., users also
considered scenarios where their well-being may depend on
a device that may not be considered security-focused. For
example, the smart outlet was selected by 8 users, potentially
because security-sensitive devices may be connected to it.
Finding 5 (F5): Users can confidently specify execution
indicators aside from certain unpredictable triggers. Table I
summarizes the options chosen by our users, i.e., selected one
of the ranges offered, or “anytime”, or “not sure”, for each
of the three execution indicators (i.e., time-range, frequency,
day-range). Users confidently specified indicators for most of
their routines and were not sure in very few cases (i.e., at most
10.26%, for the day-range). Moreover, users selected specific
time-range and frequency values for a majority of routines,
i.e., for time-range (i.e., 56.78%) and frequency (i.e., 93.77%).
This clearly demonstrates that users are able to confidently
supply execution indicators for most of their routines. On
further analyzing the “not sure” cases, we discovered that most
are caused by triggers that are unpredictable by nature (e.g.,
CO leaks), which explains why users could not specify them.

Our initial findings expose the evident need to analyze user-
driven routines (F1→F3), and additional challenges, such as
unpredictable execution indicators (F5). Sections V→VIII will
explore this data further to test naturalness of the home corpus,
as well as the validity, and usefulness of Hεlion’s scenarios.

V. RESEARCH QUESTIONS (RQS)

We construct 4 RQs to address our core contributions:
• RQ1 : How natural is home automation corpora?
• RQ2 : Do the scenarios generated by Hεlion seem valid

(i.e., realistic) to the end-user?
• RQ3 : Can Hεlion’s scenarios be applied in useful ways to

improve the security and safety of home automation?
• RQ4 : Can a formal (e.g., graph-based) modeling approach

generate scenarios as effectively as Hεlion?
To answer RQ1, we test our naturalness hypothesis for our

HOME corpus, which is the foundation of Hεlion (Sec. VI).
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Fig. 3. Cross-entropy of the n-gram model over the HOME, Guten-
berg, the C# corpora, and the C# corpus without syntactic tokens.

To answer RQ2 and evaluate the perceived validity of the
scenarios Hεlion generates, we perform two experiments with
external evaluators, i.e., 16 users who were not a part of the
HOME corpus (Sec. VII). To answer RQ3, we revisit the
policy specification problem from Sec. II, and demonstrate
how Hεlion’s scenarios enable an expert to predict security
and safety policies with manageable effort (Sec. VIII). We also
explore how stakeholders may gain insight into the security
problems in platforms/devices, by executing the scenarios in
a SmartThings-based execution engine. Finally, for answer-
ing RQ4, we create a formal (graph-based) approach as a
baseline to compare against Hεlion, and discuss how (and
why) Hεlion’s predictive approach enables it to generate valid
scenarios where the baseline fails (Sec. VII-C).

VI. EVALUATING THE NATURALNESS OF HOME (RQ1)

We test our naturalness hypothesis by measuring the cross-
entropy of the HOME corpus, i.e., the measure of how per-
plexed a model built from a training corpus is when exposed
to other sequences from the same domain (Sec. II-D). We use
the MITLM toolkit [28] to measure cross-entropy, with 10-fold
cross validation. Since naturalness is relative, we compare the
cross-entropy of HOME with that of the Gutenberg corpus
(i.e., English), as well as a the C# corpus, i.e., the best cross-
entropy of all programming corpora [14].2

Results: As seen in Fig. 3, the cross-entropy for the HOME
corpus starts at a high of 6.9 bits for a unigram model, drops
to 2.70 bits for the bigram model, and then stays close to
1.7 bits for the rest of the values of n from 3 up to 10.
There is an explanation for this trend, which is observed in
the Gutenberg and C# corpora as well: a unigram entropy is
expected to be much higher, as the unique token frequencies
may be heavily skewed. However, as the model considers more
history (e.g., for the bigram), the entropy drastically reduces.
We now discuss the key finding from this analysis:
Finding 6 (F6): The HOME corpus is natural relative
to English language and software corpora, without any
syntactic glue. As seen in Fig. 3, the HOME corpus has low
cross-entropy values relative to C# and Gutenberg corpora,
and hence can be said to be more natural, which satisfies
our naturalness hypothesis (RQ1). Further, there is another

2The raw cross entropy values for C# and Gutenberg are from [29].



interesting aspect of the HOME corpus: the user-driven home
automation sequences in the HOME corpus are purely seman-
tic in nature, i.e., have zero syntax involved, and only capture
the functionality that the user desires from the automation.
On the contrary, C# or other software corpora may appear
more natural than they are because of the common “syntactic
glue” [29], which when removed, causes a steep drop in
naturalness (see “C# without Syntax Tokens” in Fig. 3). That
is, while the naturalness of software corpora drops when the
syntactic glue is removed, the HOME corpus is unaffected,
which indicates its amenability to being predicted.

The low cross-entropy of the HOME corpus demonstrates
that Hεlion’s model (i.e., Sec. III-D) would be able to capture
the regularities in it, and hence, can generate natural scenarios.
However, are such scenarios valid according to end-users? The
next section addresses this question.

VII. EVALUATING THE VALIDITY OF SCENARIOS (RQ2)

We assessed the ability of Hεlion to generate valid scenarios
with 16 evaluators, i.e., a separate set of users who were
not included in the initial 40 users, but from the same user
population. This evaluation consists of three studies. First, we
conduct the routine comparison study (Sec. VII-A), i.e., we
evaluate whether Hεlion can generate routines that are just
as valid as the routines collected from users, in the view of
the evaluators. This serves as our first baseline comparison.
Second, we perform a sequence generation study, in which
we generate scenarios (i.e., sequences) using histories given
by the external evaluators, and test their perceived validity
under various model configurations (Sec. VII-B). Finally, we
create a graph-based model similar to those built by prior work
for policy checking [4], [9], [10], and compare its ability to
generate valid scenarios with that of Hεlion, which serves as
our second baseline comparison for validity (Sec. VII-C).

A. Routine Comparison Study

We envision that many applications of Hεlion will rely
on its ability to generate reasonable bigrams, i.e., pairs of
events which may be analyzed as routines. Using the routines
previously created by end-users as our baseline (Sec. IV-A),
this study answers the following key question: Can Hεlion
generate routines that are as valid as those created by users?

Generating Routines: Recall that Hεlion is a sequence gen-
erator that predicts a sequence, one event at a time, given a
history (Sec. III-E). We predict routines using an approach
similar to 10-fold cross validation: i.e., we split the HOME
corpus randomly into 90%/10% sequences, train on the 90%,
and sample histories from the remaining 10% (i.e., random
subsequences of “odd” lengths) to generate routines. Given a
history with an odd length, the first prediction Hεlion makes
is likely to be the completion (i.e., the action) of a routine,
with the trigger being the last event in the history. Hence, we
assume the second and third generated events as a new routine.

We randomly generated 40 such unique routines through
the following configurations of the model (i.e., varying the
n-gram and up/down modalities): (i) up/3-gram (10 routines),

TABLE II
SUMMARY OF THE EVALUATOR RATINGS FOR THE ROUTINE

COMPARISON STUDY (% COMPUTED OUT OF 160 TOTAL RATINGS)
Routine Study (Bigram Generation)

Model
Config

N-
Gram

Strongly
Agree

Somewhat
Agree

Somewhat
Disagree

Strongly
Disagree

3 50.63% 19.38% 11.87% 18.13%up 4 69.38% 13.12% 4.38% 13.12%
3 5.0% 11.87% 15.0% 68.13%down 4 0.63% 11.87% 19.38% 68.13%

– (survey) – 63.75% 25% 3.75% 7.5%

(ii) up/4-gram (10 routines), (iii) down/3-gram (10 routines),
and (iv) down/4-gram (10 routines). We chose the up flavor
to answer the validity question, but we also chose the down
flavor to understand if really unnatural routines (i.e., down) are
also perceived by users as invalid. Additionally, we randomly
selected 10 unique routines from 10 different users from the
data collected in Sec. IV-A, i.e., (v) survey (10 routines).

Methodology: We conducted this study in-person, wherein a
proctor explained the study procedure to the evaluators, and
noted down any comments. Evaluators were asked to rate each
of the 50 unique routines described previously, in terms of how
valid (i.e., reasonable) they seemed, according to a modified
Likert Scale (i.e., with options: Strongly Agree, Somewhat
Agree, Somewhat Disagree, and Strongly Disagree). The order
of routines was randomly shuffled for each evaluator to
mitigate inductive bias. Additionally, evaluators were given
the opportunity to provide additional feedback after the task.

Results: Table II summarizes the ratings for the 10 routines
in each configuration by 16 evaluators (i.e., 160 ratings per
config). As we see in the table, routines generated with the up
flavor are generally rated as valid, whereas the down routines
are generally rated invalid. We now describe our findings:
Finding 7 (F7): Routines generated using Hεlion are as
valid as routines created by users. Our evaluators rate over
half (i.e., 50.63%) of the up/3-gram routines and 69.38% of
the up/4-gram routines as strongly agree. In the latter case,
Hεlion scores higher than the survey routines (63.75% strong
agreement). Moreover, the total agreement (i.e., strongly plus
somewhat agree) is just over 70% for up/3-gram routines, and
82.5% for the up/4-gram routines, the latter being reasonably
valid relative to the 88.75% agreement for the survey routines.
Finding 8 (F8): Unnatural routines generated by Hεlion
are perceived as invalid by users, and sometimes as un-
safe/insecure. Both down/3-gram and down/4-gram routines
are overwhelmingly rated as invalid (68.13% strong disagree-
ment), i.e., unnatural sequences generated using Hεlion are
also considered invalid by users. More importantly, some users
commented that these routines were unsafe; e.g., one user said
that “...automations are a hazard. If I’m not home I don’t want
to gas stove to turn on.” This finding is likely to extend to
longer scenarios, and indicates the potential use of Hεlion’s
down flavor for modeling misuse cases or anomalies.
Finding 9 (F9): The notion of validity may vary, even
among users from the same population. Evaluators rated
7.5% of the survey routines as strongly disagree, and another



TABLE III
A SUMMARY OF THE RATINGS FOR THE SEQUENCE GENERATION

STUDY. PERCENTAGES ARE OUT OF 160 RATINGS IN TOTAL.
Event Sequence Generation Study

Training Data N-
Gram

Strongly
Agree

Somewhat
Agree

Somewhat
Disagree

Strongly
Disagree

3 41.25% 21.25% 15.63% 21.88%HOME 4 37.5% 25.63% 12.5% 24.38%
3 43.13% 33.75% 10.63% 12.5%HOME

+ Evaluator’s data 4 38.75% 28.75% 16.88% 15.63%

3.75% as somewhat disagree. This indicates that even within
the same population, there is diversity in terms of what users
consider to be a reasonable routine, potentially due to personal
preference. For example, one evaluator said that they needed
additional conditions to be stated for a routine to be valid:
“...For the routine if time is Morning, turn the Coffee Maker
on, the user should also be at home.” In some cases, evaluators
did not agree with a particular device being a part of the
trigger or action, even if the rest seemed reasonable. These
preferences also caused many of the “somewhat” ratings.

B. Sequence Generation Study

The sequence generation study measures the ability of
Hεlion to produce valid sequences of lengths ≥3, based on
histories provided by the external evaluators. Further, we
also test if the validity of the generated scenarios improves
once Hεlion knows more about the user’s home automation
context (i.e., if we collect home automation sequences from the
evaluators and include them in the model), just as NLP-based
auto-complete approaches improve in their predictions after
learning from the user’s data. Therefore, prior to the study, we
collected user-driven routines and execution indicators from
the evaluators and computed home automation sequences for
them. Also, we asked the evaluators to provide us with two
histories, i.e., event sequences that could happen in their home.

Methodology: This study was conducted using a methodology
similar to the routine comparison study, with a few differences.
First, all four model configurations were of the up flavor,3

i.e., the general up/3-gram and up/4-gram models trained on
the HOME corpus, and evaluator-specific up/3-gram and up/4-
gram models, trained on the HOME corpus as well as the
evaluator-specific home automation sequences. Second, each
model configuration was used to generate 5 successive events,
for the two histories provided by each evaluator. The evaluator
rated the validity of a generated event based on the history
used to generate it, rating 40 events in total.

Results: Table III summarizes the evaluator ratings for the
scenarios generated by Hεlion (i.e., 160 ratings per configura-
tion). Evaluators mostly agreed with Hεlion’s scenarios, and
the agreement was much higher when including evaluator-
specific sequences. Further, evaluators justified scenarios as
reasonable with additional explanation in most cases.
Finding 10 (F10): Hεlion is able to generate reasonable
scenarios, despite previously unseen tokens in evaluators’

3We did not use the down flavor to reduce the number of questions asked,
and hence, to prioritize quality responses and rationale.

histories. The histories provided by 8/16 evaluators contained
tokens that were not present in the HOME corpus. Tokens
outside model’s vocabulary are generally known to hurt the
predictive capabilities of LMs. However, Hεlion delivers a
reasonable worst case performance, i.e., achieving a validity
rating of over 62% in both 3 and 4-gram configurations.

Finding 11 (F11): Including the user’s data improves the
validity. As shown in Table III, the models including the eval-
uator’s event sequences perform much better, with the overall
agreement for the 3-gram and 4-gram models rising to 76.88%
and 67.5% respectively, from just over 62% previously. Note
that whether training with or without the evaluator’s data, the
histories provided by the evaluators were mostly outside the
scope of the model, i.e., only 4/32 histories provided had
subsequences of size ≥3 represented in the training sequences.
A potential deployment of Hεlion for end-users will benefit
from this trend, as users may want to personalize the model,
leading to improved predictions.

Finding 12 (F12): Context-shifts may lead to lower ratings.
Hεlion can generate event sequences of arbitrary lengths;
however, in reality, many scenarios of varying sizes may
occur one after the other in the home. We observed that in
many cases, users rated the first event of a new contextual
scenario low, as they could not reason about it in terms of
the history. For example, consider the following scenario, the
first 3 events of which are the user-provided history: {it is night
→ temperature decreases → security system ON → air quality
low → air purifier ON}. This quote from the user illustrates
the context-shift: “The first sequence does not make much
sense to me because the air quality detection and the security
system/night mode are not clearly related...second sequence
makes perfect sense, as you would want the air to be purified
if it was detected to be of suboptimal quality.”. As Hεlion
generates sequences that may actually span discrete contexts
in the home, it may be useful for a longitudinal evaluation of
the home. Moreover, the challenge of capturing these context-
shifts exposes a promising research direction.

C. Baseline Comparison: Hεlion vs Graph-based Modeling

Prior work has used model checking (e.g., using linear
temporal logic (LTL)) to evaluate home automation routines
against security or safety policies [4], [9], [10]. Such a model
is constructed directly from a set of IoT apps, and can
be generally represented as a directed graph, in which the
vertices are home automation events, and edges represent
causal relationships among the events (or state transitions,
if the vertices represented device states). For example, given
the routine IF user home THEN camera OFF, the graph will
contain the edge (user home, camera OFF).

While prior research checks policies using this graph model,
we intend to use it as a baseline approach for generating
scenarios that is more grounded in user data than random
sequences. Hence, we (1) create a graph-based model, called
GraphHome (or GH) using the HOME corpus, and (2) use it
to generate scenarios for the same histories provided to Hεlion.



Methodology: We constructed GH from the HOME corpus
(i.e., from 40 users). In doing so, we added causal edges,
i.e., between triggers and actions of individual routines, and
temporal edges, i.e., among routines as they appear consec-
utively in a home automation sequence, from the action of
the preceding routine to the trigger of the next. Note that
the temporal edges are a concept that Hεlion introduces (i.e.,
with execution indicators), and adding them makes GH denser,
which may improve its predictive ability. We also created
an instance of GraphHome, GH56, which includes sequences
from the 16 evaluators as well (i.e., 56 users).

To query GH for generating a scenario, i.e., predicting the
nth event using a given history of n−1 events, we search for
a path in the graph that corresponds to the history (i.e., up to
the n − 1th vertex), and predict the next vertex in the path.
Using this approach, we try to make one prediction for each
of the 32 histories provided by the 16 evaluators, for both GH
and GH56, and the 3-gram an 4-gram cases.

Results: The graph GH contains 233 vertices and 2,066 edges,
while GH56 contains 291 vertices and 2,977 edges.

For most histories, GH simply did not return a prediction,
i.e., it was able to successfully predict an event for only 3/32
evaluator-provided histories (3-gram) and 1/32 histories (4-
gram). GH56 performed slightly better for the 3-gram case,
i.e., it could predict for 6/32 histories (3-gram), but it could
also only predict for 1/32 histories for the 4-gram case.
Finding 13 (F13): A predictive approach such as Hεlion
is better suited to generate valid scenarios based on user-
provided histories. GH and GH56 analyze event-sequences
verbatim, i.e., search for the exact path corresponding to the
history in the model, and fail to predict when it is not found.
The poor prediction rate of these models (i.e., 3/32 predictions
in the best case) is certainly not due to data sparsity. In fact,
GH and GH56 are denser than Hεlion’s corpus; e.g., GH con-
tains 2,066 bigrams (vs 1,319 in HOME), 16,459 trigrams (vs
9,588), and 188,945 4-grams (vs 89,205).4 Rather, the primary
reason for the failure to predict is that human evaluators may
often provide arbitrary histories that may not be in the corpus,
and more importantly, may contain unseen tokens. Therefore,
while GH56 performed slightly better than GH as it included
the evaluators’ data (i.e., given the property discussed in F11),
it mostly fails due to user-provided tokens/sequences not in
the corpus. On the contrary, Hεlion’s predictive approach, and
specifically its use of smoothing (Sec. III-D), allows it to
extrapolate beyond the corpus and make reasonable predictions
even when faced with arbitrary histories (as seen in F10).

Finally, while Hεlion’s predictions are precise, and point
to the most probable event, approaches such as GraphHome
are agnostic to event probabilities, and will generate a large
range of potential candidates. This fundamental difference in
approach allows Hεlion to significantly reduce human effort in
tasks that require evaluation of scenarios (e.g., security policy
specification), as we discuss further in Section VIII-B.

4The graph models have more sequences than HOME, as edges in graphs
can cause new sequences outside the corpus (see Appendix D for example).

VIII. EVALUATING THE USEFULNESS OF HεLION (RQ3)
We now know that scenarios generated by Hεlion are drawn

from a natural corpus (F6), and are judged as valid by end-
users (F7, F10, F11). This section demonstrates the usefulness
of Hεlion’s scenarios for security and safety. We focus on
enabling security researchers to specify policies grounded in
natural home automation, i.e., implementing the motivating
example (Sec. II). In addition, we explore the execution of
scenarios by building an execution engine, and provide initial
insight into how platform or device vendors may benefit from
the execution of scenarios. These are not the only ways to use
Hεlion; indeed, given Hεlion’s generative ability, the possible
use cases for various stakeholders are boundless.

We develop two tools to enable these use cases, and foresee
additional tools being developed with community support:

1. Snapshot Module: This module tracks the evolution of
states of individual devices and the home, as events are
executed in the home (e.g., the “locked” state of the door
lock, the home/away mode). The module starts with a default
snapshot represented as a JSON object containing the various
global states of the home as well as states of individual devices
(see Appendix G for an example JSON object). As each event
in the scenario is examined, the snapshot evolves, i.e., one or
more of the states in the JSON changes. Our implementation
generates n successive snapshots for a scenario of length n.
The analyst can examine a chosen subset of these snapshots
(i.e., the ones for security-sensitive events) for security, safety,
or privacy violations. In the future, we plan to release a GUI-
version of the snapshot module that will visualize the state
of the home, and allow the analyst to dynamically change
parameters such as flavors, the n-gram order, or the smoothing
technique as they obtain predictions from Hεlion (see the
Online Appendix [30] for a preview of the UI).

2. Execution Engine: To allow the execution of the scenarios
predicted by Hεlion, we built an execution engine on top of
the SmartThings platform. We created device handlers (i.e.,
software proxies for devices) for all the devices represented
in the HOME corpus, by adapting existing handlers from the
SmartThings repository [3] and creating new handlers when
needed. Moreover, we instantiated each token in terms of one
or more SmartThings events, a one-time effort for each unique
token. The HOME corpus was represented with 158 unique
events, using 45 SmartThings capabilities.

We connected 15 IoT devices to our execution engine (see
list in Appendix F). Moreover, we provisioned virtual devices
using the SmartThings IDE [31] to represent the devices not
available in our lab. We created a scheduler SmartApp that
has access to all capabilities, and executes scenarios using
two parameters: (1) a sequence of tokens (i.e., scenario), and
(2) intervals between tokens. The scheduler executes tokens at
specified intervals, logging all the events it executes (i.e., the
scheduler logs). The analyst can examine the logs provided
by the SmartThings platform, along with the scheduler logs,
to identify anomalies; e.g., events that were executed by the
scheduler but did not execute in reality, or vice versa.



Note that such a platform-specific execution module has a
general limitation: certain tokens may represent events that
may not be supported by the platform, and hence, may not be
executable. We only observed 20/158 non-executable tokens;
e.g., tokens for medical IoT devices such as blood pressure
monitors, which are unsupported in SmartThings, but which
our users chose to integrate with other home automation.

A. Helping Researchers Generate Policies

Recall the motivating example in Section II-A, in which Al-
ice’s key problem was having to manually specify use/misuse
cases, i.e., not only does this process take significant effort,
but Alice has no way to determine if her policies are indicative
of real problems found in the wild. We demonstrate how using
scenarios generated by Hεlion addresses these challenges.

Enacting the motivating example and predicting policies:
We had a security researcher with prior experience creating
smart home policies using the use/misuse case requirements
engineering approach (and also an author), try out Hεlion’s
scenarios instead. The researcher used Hεlion (4-gram model)
to generate scenarios in four configurations: the up and down
scenarios described in Sec. III-E, as well as two new hybrid
configurations, i.e., up-down, which predicts 1-3 down events
for every 10 events in an up scenario, and down-up, which does
the inverse of up-down. We sampled 260 unique histories from
the sequences of 5 new users (i.e., outside the HOME corpus)
as input for Hεlion. Each scenario consisted of 13 events, i.e.,
3 events from the history and 10 predicted events.

Results: The researcher analyzed each scenario using the
snapshot module, detected 27 unique violations, and generated
17 policies from them. They spent only a few seconds on
scenarios that had no interesting (i.e., security/safety sensitive)
events, and 1-3 minutes on interesting scenarios, i.e., about 10
hours for the entire process. We discuss three salient policies
below (see Appendix C for the full list):
• Preventing a fire (Pol1): In one scenario, we discovered

that the gas stove was ON when the user was away. This
safety violation could cause a fire, and is addressed with the
policy: the gas stove should be OFF when the user is away.

• Preventing an explosion (Pol2) We discovered that the
gas stove was switched ON after the smoke/CO detector
detected smoke, i.e., when there is already a fire. A gas
leak and fire together could lead to a disastrous explosion,
regardless of whether the user is home or away (i.e., the
violation is unsolvable using Pol1).

• Preventing an accidental privacy violation (Pol3) We
discovered that the indoor security camera would stay ON,
even after the user got home, which is a privacy violation.
Certain vendors (e.g., NEST [32]) mitigate this problem by
turning the camera OFF when the user is at home.
We now discuss our core findings from this experiment:

Finding 14 (F14): Scenarios significantly reduce effort,
relative to a fully manual approach. Specifying policies with
Hεlion required far less effort than a fully-manual approach
of use/misuse case requirements engineering. To quote the

researcher from this experiment: “It’s very convenient. The
advantage of having the sequences is that they set up a likely
or unlikely scenarios without me having to invent it.”
Finding 15 (F15): All of Hεlion’s configurations, i.e.,
up, down, up-down and down-up, are useful. Each of our
configurations contributed to the policies generated. In fact,
half of the policies were obtained using a single configuration,
which indicates the value of the flavors implemented in Hεlion.

B. Baseline Comparison with GraphHome

We now compare the usefulness of Hεlion for policy spec-
ification, relative to GraphHome (Sec. VII-C).

Methodology: We created a new instance of GraphHome,
GH45, which includes the sequences from the 5 new users
(which were also used to create histories (Sec. VIII-A). GH45

contains 271 vertices and 2,576 edges. Further, we query both
GH and GH45 for the 260 unique histories used in Sec. VIII-A.

Results: GH could predict for 32/260 histories. GH45 could
predict for all 260 histories, which is expected, because the
histories were directly sampled from known sequences, i.e.,
the sequences of the 5 test users. However, these predictions
were imprecise, i.e., both GH and GH45 predicted on average
13 possible next events for each history (in the worst case, 51
predictions by GH for a single history, and 68 by GH45).
Finding 16 (F16): A predictive approach allows for pre-
cise event generation, and reduces effort, compared to a
probability-agnostic approach. Even in the average case,
GH45 would return 13 possible predictions for each query,
all equally likely according to the model, as the graph-based
approach is agnostic to event probabilities. Hence, even in
the best case scenario, a researcher would have to evaluate
13 potential cases for every history when using GraphHome
to generate policies, instead of the single event generated
by Hεlion. This imprecision would only compound, as more
future predictions are made in parallel for each of the 13
potential paths in the graph. That is, the number of poten-
tial future predictions is 13x or multiplicative at best, and
exponential at worst. Note that Hεlion would not display such
performance, as it would require all potential sequences (i.e.,
unique 4-grams in the corpus) to be equally probable. Such
a situation is highly unlikely, considering the diversity of the
corpus, which is drawn from different users, and consists of
month-long sequences generated using informed scheduling of
user-specific execution indicators (i.e., ensuring non-uniform
repetition). In other words, relative to a probability-agnostic
graph-based approach, Hεlion’s predictive approach reduces
the researcher’s effort by 13x, by generating the most probable
(up) or improbable (down) event.

C. Detecting flaws in platforms and devices

We performed an initial investigation into the usefulness
of scenarios in helping vendors evaluate platforms or partner
devices in realistic situations. On executing a random set of
less than 10 scenarios in our execution engine, we discovered
three flaws (two platform and one device):



• Dropped actions (Flaw1): On seemingly random occasions,
the SmartThings platform was not executing certain events,
including security-sensitive events such as locking the door.

• Zombie SmartApps (Flaw2): We observed that routines
that were previously “deleted” using the SmartThings mo-
bile app [33] were persistently executing in the background,
and could only be deleted from the Web IDE [31]. This
can lead to disastrous consequences if the routine were
vulnerable, or a malicious SmartApp.

• Unsafe Auto-relock default (Flaw3): We discovered that
the Yale lock [34] would stay in the unlocked state after
the door closed, unless manually re-locked. This auto-relock
feature is standard in keypad locks, but implemented as an
inconsistent default in most smart lock brands, and worse,
not presented to the user during setup with SmartThings.
While we independently discovered Flaw1 and Flaw2, they

were also previously reported on the SmartThings forum by
users [35], [36], which further speaks to the promise of
Hεlion’s scenarios in uncovering naturally occuring problems.

IX. RELATED WORK

Home automation is a complex domain, where home au-
tomation sequences created by users manifest themselves
in a highly contextual manner. Inspired by prior work in
software engineering [14], we attempt to demystify this do-
main, by developing an approach that capture the non-obvious
regularities in user-driven home automation, and generates
actionable scenarios, which are complementary to prior and
future research in this domain.

For instance, prior systems designed to evaluate or enforce
the safety/security of home automation have one trait in com-
mon: their reliance on safety/security properties that are man-
ually specified, either by users (e.g., in case of Menshen [37]
and AutoTAP [38]) or domain experts (e.g., IoTSAN [10],
Soteria [4], IoTGuard [9], or ProvThings [7]). The practical
policy specification approach enabled by Hεlion’s scenarios
(Sec. VIII-A) would assist experts in deploying such systems,
by helping them develop policies that are relevant in realistic
scenarios, with significantly less effort.

Similarly, recent work has explored the nature of end-user
error within user-driven routines [39], [40], and developed
methods to correct them [41], [42]. Hεlion has a symbiotic re-
lationship with this research, as our scenarios could lead to the
discovery of new bugs/faults not yet considered by researchers,
while Hεlion will benefit from the resultant improvements in
user-driven routines and the processes to specify them.

The natural perspective provided by Hεlion may benefit an
array of general security systems and analyses proposed for the
smart home [6], [8], [5]. For instance, ContexIoT [6], which
evaluates the frequency of its prompts using random events
generated by fuzz testing of IoT apps, could use Hεlion’s
scenarios as more realistic input. Additionally, Hεlion’s down
flavor can directly contribute to benchmarks such as IoT-
Bench [4]. Finally, Hεlion’s scenarios may be executed as test
cases to dynamically measure private information exposure by
IoT devices [43] in realistic environments.

X. LESSONS LEARNED

The value of this work is in demonstrating the feasibility
of generating natural, valid, and useful scenarios of home
automation. While we acknowledge that our data (and hence
findings) may or may not be representative of all users (e.g.,
scenarios of n ≥ 3 may seem natural to our users, but could
be rare in the wild), our investigation provides evidence to
motivate targeted, large-scale, studies into each of our 16
findings, which we distill into the following lessons:

Lesson 1: Home automation is natural, and can be
leveraged to generate valid scenarios: User-driven home au-
tomation is implicitly natural and exhibits predictable patterns
(F6), which can be modeled with statistical LMs to generate
scenarios that are reasonably valid (F7, F10, F11). These
results serve as a strong foundation for applying advanced
statistical modeling techniques for home automation security.

Lesson 2: A predictive approach is better suited for
generating scenarios: A probability-agnostic formal model-
based approach such as GraphHome may enable accurate
policy checking [4], [10], [9]; however, for a generative task
such as policy specification, a predictive approach may be
more suitable, due to its ability to capture the regularities in
home automation, and extrapolate on them to provide precise
predictions (F10, F16) under arbitrary user input (F13).

Lesson 3: Hεlion can be used to generate useful policies and
detect real flaws: Hεlion’s scenarios lead to useful policies
(F14). Moreover, all prediction flavors prove useful (F15),
and our experiments indicate the inclination of down towards
generating unsafe scenarios (F8). Finally, executing Hεlion’s
scenarios may be useful for detecting platform/device-level
flaws that occur in the wild (Sec. VIII-C).

Lesson 4: Understanding user-driven home automation en-
ables new research opportunities: Our investigation reveals
new problems, such as understanding context-shifts in the
home (F12), or capturing unpredictable execution indicators
(F5), which motivate further research; e.g., future work could
attempt to understand such shifts via a large-scale analysis
of user-driven routines, or model them by encoding temporal
information in home automation sequences.

Lesson 5: We need to study more than IoT apps: Our
empirical analysis confirms that routines are important for
users (F1), and that users express a strong preference for
creating their own routines (F3). Importantly, we observe
a significant mismatch between the available IoT apps and
routines created by our users (F2), which indicates that users
may favor easily-created routines over IoT apps. Thus, user-
driven home automation may introduce a set of largely unex-
plored security implications that may not be apparent from
just analyzing IoT apps. This paper presents an important
take away for future research in home automation security:
unlike past research in app-based platforms, the methodology
of characterizing the environment solely based on marketplace
apps is not viable for characterizing home automation.
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APPENDIX

A. Additional Survey Questions

Aside from collecting routines and execution indicators, we
asked users additional questions during the survey, illustrated
in Figures 12, 11, 10, and 13.



B. Survey Instrument for the Routine Comparison and Se-
quence Generation Studies

This section provides the survey instrument for the routine
comparison (Sec. VII-A) and sequence generation (Sec. VII-B)
studies. Specifically, Figure 14 illustrates how routines were
shown to evaluators in Sec. VII-A. Similarly, Figure 15
shows a sequence that one of the evaluators was shown, in
Sec. VII-B. Finally, we asked evaluators to provide additional
feedback regarding why they rated some routines/sequence as
reasonable, as shown in Figure 16.

C. Policies generated using Hεlion

Table IV provides the security/safety policies generated
using Hεlion.

Fig. 4. Device Selection Screen

Fig. 5. Additional Information about each device

D. Number of n-grams in GraphHome vs Hεlion

This section illustrates why the GraphHome models
(i.e.,GH, GH56, and GH45) are generally denser than Hεlion’s
model, even when both are built from the same set of home
automation sequences (e.g., the HOME corpus).

Consider a corpus composed of the two sequences below:

S1: A → B → C
S2: C → D → E

Figure 17 shows the directed graph that we would create
from the example corpus (using the methodology in Sec-
tion VII-C), for use with GraphHome. If we examine the

Fig. 6. Routine Creation

Fig. 7. Execution Indicator: Time of the Day

corpus as a collection of individual sentences, as Hεlion does,
we compute the following number of n-grams:

bigrams: 4 (AB, BC, CD, DE)
trigrams: 2 (ABC, CDE)

4-grams: zero

However, if we compute the numbers from the graph (i.e., as
we would query GraphHome), we get

bigrams: 4 (AB, BC, CD, DE)
trigrams: 3 (ABC, BCD, CDE)

4-grams: 2 (ABCD, BCDE)

4 bigrams as well, but 3 trigrams, and 2 4-grams, which
is more than what Hεlion would observe. Intuitively, the
reader may realize that the increased density is because the
independent sentences may become intertwined in the graph
(i.e., connected due to the subsequences B→C from S1 and
C→D from S2 in this case).

This increased density should increase the predictive power
of GraphHome, as it can observe more higher-order n-grams.
However, our analysis in Sec. VII-C demonstrates that GH and
GH56 fail to predict for most user-provided histories (F13), as
they analyze the graph verbatim, and do not extrapolate to
predict for n-grams that may not be present in the graph.

Finally, while the number of bigrams seen by Hεlion or
GraphHome remain the same in this section, in reality, the
bigrams (i.e., edges) in the graph may increase due to tokens
that consist of a conjunction of events (i.e., as described
previously in Sec. IV-B). That is, such conjunctions may cause
tokens to be supersets of other tokens, in a way (e.g., a token
<A & X> is a superset of another token that is simply <A>).
As a result, if there is an edge/sequence A→B in the corpus,
then we also add an extra edge <A & X>→<B> to the graph,
because if <A & X> is true, it means that <A> is also true.
For example, if the conjunction ”Light is ON and motion is
detected” is true, then the individual event ”Light is ON” is
also true at the same time, meaning that any edges from the
latter to other vertices must also be created from the former
(i.e., the conjunctive token), leading to extra bigrams.



TABLE IV
LIST OF SMART HOME VIOLATIONS, THE CORE PROBLEM THEY REPRESENT, AND THE CORRESPONDING POLICIES.

Violation Problem Policy Flavor
- Gas stove on when user away.
- Gas stove is on when user is on vacation.

Gas stove is on when user is not at
home.

(Pol1) Gas stove should not be on when the user isn’t
home.

down, up-down,
down-up

- Gas stove is on when smoke has been detected
previously.

Gas stove is on after smoke detector
detects smoke.

(Pol2) Gas stove should not be on when smoke is
detected.

up

- Security camera is taking images when motion is
detected. However, the user is home, which justifies
motion as well as potentially violates user’s privacy.
- Security camera on when user is home.
- Security camera is on and taking images when
presence sensor detects that user is present at home

Security camera is on when the user
is at home.

(Pol3) Security camera should be off when the user is
home to preserve privacy.

up, down, up-down,
down-up

- Door is opened when user is away, but the user
doesn’t receive a notification.
- Door is opened when user is in vacation, but user
isn’t notified.
- Door is opened but the presence sensor detects that
user isn’t present at home and user is not notified.

Door sensor senses that the door is
open when user is not at home.

(Pol4) User should be notified if the door sensor senses
the door is open when the user is away.

up, up-down

- Window opened when user away, but the user isn’t
notified.

Contact sensor senses that the win-
dow is open when user is not at
home.

(Pol5) User should be notified if the contact sensor
senses the window is open when the user is away.

up, down

- Water valve closed when fire sprinkler on. Water valve is closed when fire
sprinkler turns on.

(Pol6) Water valve should not be closed if the fire
sprinkler is on as a reaction to fire/smoke.

down, down-up

- Air purifier turns off when CO is detected Air purifier turns off when CO de-
tector detects CO.

(Pol7) Air purifier should not turn off automatically if
CO is detected.

down

- Shades/Blinds are opened in the morning, but the
user is away.
- Shades/Blinds opened in vacation mode.

Shades/Blinds open when user is
away.

(Pol8) Window shades should not open when user is
not home.

up, down, down-up

- Door is unlocked after gas level is detected to be high
or alarm going off, supposedly as a safety measure, but
user is away.
- Door unlocked in vacation mode.
- Door is unlocked state but presence sensor is detect-
ing that user isn’t present at home.

Door is unlocked when user is not
at home.

(Pol9) User should be prompted before the door is
unlocked automatically for any reason, when user is
away.

down, up-down,
down-up

- Door stays unlocked even after user leaves home. Door lock stays unlocked when user
leaves home.

(Pol10) Door should lock automatically when mode
changes from home to away.

down

- Door remains unlocked when the sleep monitor
detects that the user is sleeping.

Door is unlocked when user is sleep-
ing.

(Pol11) Door should be locked when the bedroom
sleep monitor detects that user is sleeping to ensure
safety.

up-down

- The sleeping monitor detects the user as sleeping,
and the garage door is open.

Garage door is open when user is
sleeping.

(Pol12) Garage door should be closed when bedroom’s
sleep monitor detects that user is sleeping.

up-down

- The induction cooktop is on after the sleep monitor
detects that the user is sleeping.

Electric appliance which is a poten-
tial fire hazard is on when user is
sleeping.

(Pol13) Induction cooktop should not be on when user
is sleeping.

up-down

- Garage door opened when user is away.
- Garage door opened when user in vacation mode.

Garage door is open when user is
not at home.

(Pol14) Garage door should be closed when user is
not home.

down, up-down,
down-up

- Glass break is detected when user is away but user
is not notified.
- Glass break is detected in vacation mode but user
isn’t notified.

Glass break is detected but the user
is not notified.

(Pol15) User should be notified when glass break is
detected.

down-up

- Security alarm turned off when smoke is detected
and user is away.

Security system turned off when
smoke detector detects smoke.

(Pol16) Security alarm should not be off when user
isn’t home.

down-up

- Fire sprinkler on when there is no fire. Fire sprinkler is on for no reason. (Pol17) Fire sprinkler should only be on when there’s
fire detected in the home.

up-down, down-up

Fig. 8. Execution Indicator: Time of the week

E. Background on Statistical LMs as used in Hεlion

A statistical LM, fundamentally, measures the probability of
a sentence, given the probabilities of the individual words in
the sentence, previously estimated from a training corpus. That
is, traditionally, a statistical LM is defined as a probability esti-
mation over units of written/spoken language, which measures
the probability of a sentence s = wm

1 = w1w2...wm based on

Fig. 9. Execution Indicator: Frequency

word probabilities. This ability can also enable prediction, i.e.,
by predicting the next most probable word that can follow a
sequence of words. In the context of modeling smart home
routines, we define a “sentence” to represent a sequence of
home automation events, wherein the “words” (a.k.a tokens)



Fig. 10. Importance of routines to the users

Fig. 11. Sources of ideas for routines

are atomic smart home events (e.g.,<LightBulb, switch, ON>).
Thus, our approach will measure the probability of an event

sequence s = em1 = e1e2...em according to its constituent
events e, relying on the chain rule of probability, as follows:

p(em1 ) = p(e1)p(e2|e1)p(e3|e21)...p(em|em−1
1 )

=

m∏
i=1

p(ei|ei−1
1 )

(1)

The n-gram language model: In practice, however, there
are often too many unique sequences to properly estimate
the probability of tokens given long histories, even with large
training corpora. Thus, we make use of the n-gram language
model, which assumes the Markov property, i.e., instead of
computing the conditional probability given an entire event
or language history, we can approximate it by considering
only a few tokens from the past. The intuition behind n-gram
language models applied to natural language is that shorter
sequences of words are more likely to co-occur in training
corpora, thus providing the model with more examples to
condition token probabilities, enhancing its predictive power.
While n-gram models are valued for their practicality in NLP
and software analysis contexts, they are arguably an even more
intuitive fit for analyzing home automation event sequences.
This is due to the organic semantic relationships smart-home
events exhibit, i.e., the localized causal relationship between
triggers and actions (e.g., a trigger preceding a correspond-

Fig. 12. Setup preferred by the users to create routines

ing action or set of actions), which are more relevant than
presumably weaker correlations with events from the distant
past. Using the n-gram model, we estimate the probability of
the event sequence s = em1 = e1e2...em as follows:

p(em1 ) =

m∏
i=1

p(ei|ei−1
1 ) ≈

m∏
i=1

p(ei|ei−1
i−n+1) (2)

Evaluating the naturalness of a corpus: The effectiveness
of n-gram modeling in the context of smart home events
holds only if our intuition regarding the naturalness home
automation event sequences drawn from user-directed routines
is correct. Thus, we must answer the question: Are such
event sequences natural? Fortunately the naturalness of token
sequences can be measured according to a trained model’s
perplexity (or its log-transformed version, cross-entropy) on
unseen data. These are standard metrics used to test the
viability of statistical language modeling for modeling any
corpora. A trained model will be “perplexed” upon observing
a new sequence if it finds the sequence surprising, i.e., unlike
any sequence observed in the corpora. Thus, if a domain is
natural, then the perplexity of a model built on corpora from
the domain (e.g., home automation event sequences from a
population of users) when applied to new sequences from the
same domain should be measurably low. That is, the model
should be able to identify regularities in the event sequences,
and hence, predict new sequences with confidence. The cross-
entropy H of an n-gram model M can be computed as follows:

HM (e1...en) = −
1

n
log2 PM (e1...en) (3)

where HM is the average negative log probability that M
assigns to each event en in a test sequence. Perplexity is 2HM .

Predicting with an LM, with conflicting data: As Hεlion
collects routines from users, it is indeed possible that multiple
users might create conflicting routines (e.g., opposite actions
on the same trigger). If literally analyzed (e.g., in a graph-
based model such as GraphHome), these routines would lead
to conflicting predictions. However, conflicting predictions
would be highly unlikely in Hεlion due to (1) its process of
informed scheduling, and (2) due to the nature of statistical
LMs. That is, first, even if two users have conflicting routines,
the execution indicators and informed scheduling introduce
further variance in the sequences generated for each user
(otherwise, the HOME corpus would not have a non-zero
entropy). Second, statistical LMs assign sequence probabilities
based on how many times a sequence appears in a corpus, i.e.,



Fig. 13. Device-selection screen to select security-sensitive devices

Fig. 14. Screen to validate routines

Fig. 15. Screen to validate sequences
Fig. 16. Screen to provide additional feedback

A B C D E

Fig. 17. An example of a directed graph created for GraphHome

the majority sequence always wins.

F. Execution Engine Device List

We integrated the following devices in our SmartThings-
based execution engine: (1) AeoTec MultiSensor, (2) Amazon
Alexa, (3) Arlo Security Camera, (4) First Alert Smoke
and CO detector, (5) Fortrezz Alarm, (6) Google Home, (7)
iHome Switch, (8) Philips Hue Light, (9) Ring DoorBell, (10)
SmartThings Motion Sensor, (11) SmartThings MultiPurpose
Sensor, (12) SmartThings Switch, (13) Tp Link-Kasa Switch,
(14) Wemo SWITCH, and (15) Yale Assure Lock. The devices
were chosen primarily in terms of their popularity, and to
ensure a diverse collection of device types.

G. Example JSON object used in the Snapshot Module

Figure 18 shows an example of a JSON object used in the
snapshot module. The states unaffected by the scenario are
not shown in the object for brevity and ease of analysis. In

Fig. 18. An example JSON object used in Hεlion’s snapshot module.

the future, we plan to release a UI-version of the module
that visualizes this object, and also allows the analyst to
dynamically change model parameters and affect prediction
(see our online appendix for a preview of the planned UI [30]).


