CIS 6930: IoT Security

Lecture 8

Prof. Kaushal Kafle

Spring 2025

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes and Clarifications

- Midterm grades
 - Paper review 25%
 - Class discussions 25%
 - Class project 50%
- Clarifications about the use of Generative AI in this class
 - Follow the syllabus!
- Progress on the project..

User Authentication

Why authentication?

- We live in a world of rights, permissions, and duties
 - Authentication establishes our identity so that we can obtain the set of rights
 - E.g., we establish our identity with a store by providing a valid credit card which gives us rights to purchase goods
 - this is a *physical* authentication system
 - Threats?

Why authentication?

- Same in online world, just with different constraints
 - Vendor/customer are not physically co-located, so we must find other ways of providing identity
 - e.g., by providing credit card number ~ electronic authentication system
 - Risks (for customer and vendor) are different
 - Q: How so?
 - Computer security is critically dependent on the proper design, management, and application of authentication systems

What is Identity?

- That which gives you access (your credential) ... which is largely determined by context
 - We all have lots of identities
 - Pseudo-identities
- Really, determined by who is evaluating credential
 - Driver's License, Passport, SSN prove ...
 - Credit cards prove ...
 - Signature proves ...
 - Password proves ...
 - Voice proves ...

• *Exercise*: Give an example of bad mapping between identity and the purpose for which it was used.

Three Flavors of Credentials

- ... are evidence used to prove identity
- Credentials can be
 - 1. Something I am
 - 2. Something I have
 - 3. Something I know

Credential: Something I am.

But how do you prove who you are in the digital world?

Biometrics

- Biometrics measure some physical characteristic
 - Fingerprint, face recognition, retina scanners, voice, signature, DNA
 - Nexus phones, Apple Face ID, Apple touch ID
 - Can be extremely accurate and fast
- Issues with biometrics?
 - Revocation lost fingerprint?
 - *"Fuzzy" credential*, e.g., your face changes based on mood
 - Privacy?
 - Great for physical security, not feasible for on-line systems

Biometrics Example

- Fingerprint readers record the conductivity of the surface of your finger to build a "map" of the ridges
- Scanned map converted into a graph by looking for landmarks, e.g., ridges, cores, ...

Fingerprint Biometrics

- Graph is compared to database of authentic identities
- If graph is same (enough), then person deemed "authentic"
 - Problem: what does it mean to be "same enough"?
 - rotation
 - imperfect contact
 - finger damage
 - Fundamental Problem: False accept (FP) vs. false reject rates (FN)?

Dynamic Biometrics

- Biometrics can be broken into two types
 - Static and dynamic
 - Prior examples are static biometrics
- Dynamic biometrics include
 - How we type on keyboard, gait analysis, voice, eye movement

Credential: Something you have.

Credential: Something you have

- Digital Certificates
- Tokens (transponders, ...)
 - EZ-pass
 - SecurID
- Smartcards
 - Unpowered processors
 - Small NV storage
 - Tamper *resistant*

A (simplified) sample token device

- A one-time password (or half of a two-factor authentication system)
- Secret key K
 - One-time password for epoch i is $\operatorname{HMAC}_{K}(i)$
 - Tamperproof token encodes K in firmware
 - Time synchronization allows authentication server to know what i is expected, and authenticate the user.
- Note: somebody can see your token display at some time but learn nothing useful for later periods.

Credential: Something you know.

Something you know...

- Passport number, mother's maiden name, last 4 digits of your social security, credit card number
 Q: Are these good credentials?
- Passwords and pass-phrases
 - Note: passwords are generally pretty weak, and may be used in more than one place
 - Computers can often guess very quickly
 - Easy to mount offline attacks
 - Easy countermeasures for online attacks

Some Issues for Password Systems

- A password should be easy to remember but hard to guess
 - that's difficult to achieve!
- Some questions
 - what makes a good password?
 - where is the password stored, and in what form?
 - how is knowledge of the password verified?

Password Storage

- Storing unencrypted passwords in a file is high risk
 - compromising the file system compromises all the stored passwords
- Better idea: use the password to compute a oneway function (e.g., a hash), and store the output of the one-way function
- When user inputs the requested password...
 - 1. compute its one-way function
 - 2. compare with the stored value

Attacks on Passwords

- Suppose passwords could be up to 9 characters long
 - 26 uppercase + 26 lowercase + 10 digits + 32 special characters -> nearly 10²
- This would produce around ~10¹⁸ possible passwords; 320,000 years to try them all at 10 million a second!
- Unfortunately, not all passwords are equally likely to be used: password = password!

Password Popularity – Top 20

Rank	Password	Number of Users with Password (absolute)	Rank	
1	123456	290731	11	
2	12345	79078	12	
3	123456789	76790	13	
4	Password	61958	14	
5	iloveyou	51622	15	
6	princess	35231	16	
7	rockyou	22588	17	
8	1234567	21726	18	
9	12345678	20553	19	
10	abc123	17542	20	

Rank	Password	Number of Users with Password (absolute)
11	Nicole	17168
12	Daniel	16409
13	babygirl	16094
14	monkey	15294
15	Jessica	15162
16	Lovely	14950
17	michael	14898
18	Ashley	14329
19	654321	13984
20	Qwerty	13856

Password Length Distribution

Dictionary Attacks

- Brute-force password by trying every word in a "dictionary"
- Plenty of automated tools: e.g., John the Ripper

Dictionary Attacks (Cont'd)

- Attack 1 (online):
 - Create a dictionary of common words and names and their simple transformations
 - Use these to guess the password
 - What's one easy mitigation?

Dictionary

What does your phone do?

Dictionary Attacks (Cont'd)

- Attack 2 (offline):
 - Usually *F* is public and so is the password file
 - In Unix, *F* is crypt, and the password file is /etc/passwd.
 - Compute *F*(*word*) for each word in the dictionary
 - A match gives the password

Dictionary

Password file

Summary of data accessed in Incident 2:

Lastpass customer vault leak

- DevOps Secrets restricted secrets that were used to gain access to our cloud-based backup storage.
- Cloud-based backup storage contained configuration data, API secrets, third-party integration secrets, customer metadata, and backups of all customer vault data. All sensitive customer vault

Dictionary Attacks (Cont'd)

- Attack 3 (offline):
 - To speed up search, pre-compute *F*(dictionary)
 - A simple look up gives the password

"Salt" ing passwords

- Suppose you want to make an offline dictionary attack more difficult
- A *salt* is a random number added to the password
- This is the approach taken by any reasonable system

 $salt_1, h(salt_1, pw_1)$ $salt_i, h(salt_2, pw_2)$ $salt_i, h(salt_3, pw_3)$ $salt_n, h(salt_n, pw_n)$

Password Salt (Cont'd)

• Storing the passwords

Password Salt (Cont'd)

Verifying the passwords

Does Password Salt Help?

- Attack 1?
 - Without Salt
 - With Salt

Dictionary

Does Password Salt Help?

- Attack 2?
 - Without Salt
 - With Salt

Password file

Dictionary

Does Password Salt Help?

- Attack 3?
 - Without Salt
 - With Salt

Example: Unix Passwords

- Keyed password hashes are stored, with two-character (16 bit) salt prepended
 - password file is publicly readable
- Users with identical passwords but different salt values will have different hash values

Is this secure?

- Suppose you have a salted password cracker.
 - It takes 10 microseconds to check a guess.
 - The password is chosen from the following pattern:
 - where "d+" is 1-4 digits and "w" is a word taken out of a 100,000 word dictionary.
- How long (avg) does it take to crack the password?

{d+} {d+}w w{d+} {d+}w{d+}

Brute forcing ...

$$\{d+\} = 10^4 + 10^3 + 10^2 + 10^1 =$$

 $\{d+\}w = 11,110 * 100,000 =$

- $w\{d+\} = 100,000 * 11,110 = 1,111,000,000$
- ${d+}w{d+} = 11,110 * 100,000 * 11,110 = 12,343,210,000,000$
- 11,110
- 1,111,000,000
- - = 12,345,432,011,110

 $12, 345, 432, 011, 110 \; guesses/100, 000 =$ $123, 454, 320.11 \ seconds/2 =$ $61,727,160.05 \ seconds \ (on \ average) =$ $17,146.43 \ hours \approx$ 714.43 $days \approx$ 1.9 years

- Does not seem so bad, right?
 - Now try d+ is 1-2 characters
 - What about dictionary of 1,000 words?

Human Limitations...

- The rule of seven plus or minus two.
 - George Miller observed in 1956 that most humans can remember about 5-9 things more or less at once.
 - Thus is a kind of maximal entropy that one can hold in your head.
 - This limits the complexity of the passwords you can securely use, i.e., not write on a sheet of paper.
 - A perfectly random 8-char password has less entropy than a 56-bit key.

Implication?

$salt_i, h^{100}(salt_i, pw_i)$

Slowing down the process

Compromised Passwords

- Guessing a password is only one way to lose it
- Other ways
 - Eavesdropping
 - Phishing
 - Password reuse on multiple websites
- *Solution*: each site has a different password

Password Managers

- ... but the number of combinations makes the memory recall problem even harder
- A common approach is to have tiers of passwords
 - E.g., system login, banking, shopping, email, social media, throw-away
- Another solution is to have a password manager
 - Many options (in-browser, LastPass, KeePass, etc.)
 - Considerations:
 - Where is the database stored?
 - How is the database protected?
 - Integration with mobile OSes?
 - Copy to clipboard?

Multifactor Authentication

- While passwords are the standard, the other factors (are, have) can be combined to enhance security
- Examples:
 - Google's 2-step verification
 - SMS messages
- Caution: what if you are authenticating from a mobile device?

Forgotten Passwords

- With all of these passwords, users often forget what password they used
- Systems must have an automated password recovery method
- Common Methods
 - Email reset
 - Security questions
 - Phone call / SMS
- What is good and bad about these?
- *FileVault on Mac:* Use Apple ID to recover data, *no MFA*!