CIS 6930:
loT Security

Lecture 6

Prof. Kaushal Kafle

Spring 2025

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes and Clarifications

® Related Work

® Learn relevant literature and where your

research work fits
® Seminal work in your topic
® Recent work in your topic

® Compare and contrast

® Finding sources:

® Top conference websites/proceedings
(ACM, IEEE, USENIX, NDSS...)

® Semantic scholar/Google scholar/USF
library

SSL/TLS in the
Real World

Network Stack, revisited

Application
SSL/TLS

Transport
Network
Link

Physical

The verifier matters

® SSLis an application layer protocol
® Software developers must use it correctly

® Pre-Smartphone World ® Smartphone World

® Small set of ® Possibly millions of
applications that use applications that use SSL
SSL (E.g., Web - ® Many apps do not verify
Browser) certificates correctly —

® Lots of attention to Implications?
those apps ® Developers change default

configuration — WHY?

Mixed SSL use

® Mixed use of HTTP and HTTPS on the same site.

® Use case 1: Login page is not HTTPS, but the login form is
submitted to a HTTPS page.

® MiTM can replace HTTPS links with HTTP (i.e., SSL Stripping)

® Use case 2: Login page is HTTPS, but the rest of the website
may be HTTP

® Unencrypted cookies/session IDs! (e.g., Firesheep)

Lesson 2: Use HTTPS throughout

Certificate Validation

® Apps can override the TrustManager interface

69
SSLContext sslContext = SSLContext.getInstance("SSL"); https://stackoverfl
v _ ow.com/questions
// set up a TrustManager that trusts everything
sslContext.init(null, new TrustManager[] { new X509TrustManager() { /2703161 /how-to-
public X509Cert1f1cat?[] getAcceptedIssuers() { ignore-ssl-
System.out.println("getAcceptedIssuers ============="); o
return null; certificate-errors-
¥ in-apache-
public void checkServerTrusted(X509Certificate[] certs, httpclient-4-0
String authType) {
System.out.println("checkServerTrusted =============");
}

} }, new SecureRandom());

® What is wrong with this example? It accepts all server
certificates!

Lesson 3: Always validate the server’s certificate

https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0

Using self-signhed certificates

® The right way: Certificate Pinning

® i.e., hardcode your self-signed certificate.

CertificateFactory cf = CertificateFactory.getInstance("X.509"); step I: Read in your

// From https://www.washington.edu/itconnect/security/ca/load-der.crt .
InputStream calnput = new BufferedInputStream(new FileInputStream("load-der.crt")); Certlflcate
Certificate ca;
try {

ca = cf.generateCertificate(calnput);

System.out.println(“ca=" + ((X5@9Certificate) ca).getSubjectDN());

} finally { // Create a KeyStore containing our trusted CAs
calnput.close(); String keyStoreType = KeyStore.getDefaultType();
} KeyStore keyStore = KeyStore.getInstance(keyStoreType);

keyStore.load(null, null);
keyStore.setCertificateEntry(“ca", ca);

Step 2. Create // Create a TrustManager that trusts the CAs in our KeyStore
[]

String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();
Custom Tru StManager TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);

tmf.init(keyStore);

// Create an SSLContext that uses our TrustManager
SSLContext context = SSLContext.getInstance("TLS");

Step 3: Compare context.init(null, tmf.getTrustManagers(), null);
server certificate with
the hard-coded one

Using self-signhed certificates

® The right way: Certificate Pinning
o

i.e., hardcode your self-signed certificate.
® Allows secure use of self-signed certificat

® Variation: |
® Pinning own CA certificate
® Gives you more flexibility.

® How to change the certificate?
® App updates!

® Don’t have to trust 100s of Root CAs!

Lesson 4: Certificate pinning, if done correctly,
is more secure than default SSL use.

Hostname Verification

® Back to basics: What does a certificate provide?
® Binding between a public key and identity

HostnameVerifier hostnameVerifier = org.apache.http.conn.ssl.SSLSocketFactory.ALLOW ALL HOSTNAME_VERIFIER;
DefaultHttpClient client = new DefaultHttpClient();

SchemeRegistry registry = new SchemeRegistry();

SSLSocketFactory socketFactory = SSLSocketFactory.getSocketFactory();
socketFactory.setHostnameVerifier((X509HostnameVerifier) hostnameVerifier);
registry.register(new Scheme("https", socketFactory, 443));

SingleClientConnManager mgr = new SingleClientConnManager(client.getParams(), registry);
DefaultHttpClient httpClient = new DefaultHttpClient(mgr, client.getParams());

// Set verifier
HttpsURLConnection.setDefaultHostnameVerifier(hostnamevVerifier);

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lg=1

® Any certificate issued by any trusted CA will be accepted!

® i.e., HostName= google.com, but cert has CN=foogle.com? /

Lesson 5: Never override the HostNameVerifier

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

Access Control

Policy

® A policy specifies the rules of security

® Some statement of secure procedure or configuration that
parameterizes the operation of a system

® Example: Airport Policy

® Take off your shoes

® No bottles that could contain > 3 0zs

® Empty bottles are OK?

® You need to put your things through X-ray machine

® Laptops by themselves, coat off

® Go through the metal detector

® Goal: prevent on-airplane (metal) weapon, flammable liquid,
dangerous objects ... (successful?)

Computer Security Policy Goals

® Secrecy
® Don’t allow reading by unauthorized subjects
® Control where data can be written by authorized subjects
® Why is this important?
Integrity
® Don’t permit dependence on lower integrity data/code

® Why is this important?
® What is “dependence”?
® Availability
® The necessary function must run
® Doesn’t this conflict with above?

... when policy goes wrong

® Driving license test: take until you pass

® Mrs. Miriam Hargrave of Yorkshire, UK failed her driving
test 39 times between 1962 and 1970!!!!

® .. shehad 212 driving lessons
® She finally got it on the 40th try.

® Some years later, she was quoted as saying, “sometimes
| still have trouble turning right”

“A policy is a set of acceptable
behaviors.”

- F. Schneider

Access Control/Authorization

® An access control system determines what rights
a particular entity/subject has for a set of

® |t answers the question
® E.g., do you have the right to read

® Does Alice have the right to view the ?
® Do students have the right to share ?
® Does Dr. Nadkarni have the right to change your ?

® An Access Control Policy answers these questions

20

Simplified Access Control

® Subjects are the active entities that do things
® E.g., you, Alice, students, Prof. Nadkarni
are passive things that things are done to

¢ E.g., ’ ’ ’

® Rights are actions that are taken
® E.g., read, write, share

21

Protection Domains

Protection domain

® A protection domain
specifies the set of
resources (objects) that a
process can access and the
operations that the process
may use to access such
resources.

® How is this done today?
® Memory protection

® E.g., UNIX protected
memory, file-system
permissions (rwx...)

Policy is defined with respect to the protection domain it go verns.

Access Policy Enforcement

A protection state defines what each subject can do
® E.g., in an access bits --- the policy

A reference monitor enforces the protection state
® A service that responds to the query...

A correct reference monitor implementation meets the following
guarantees

1. Complete Mediation
2. Tamperproof
3. Simple enough to verify

A protection system consists of a (1) protection state, (2) operations
to modify that state, and (3) a reference monitor to enforce that
state

23

Trusted Computing Base (TCB)

® The trusted comButing base is the infrastructure that

you assume will

ehave correctly

® What do we trust?

Hardware (keyboard, monitor, ...)
Operating Systems
Implementations

Local networks

Administrators

Other users on the same system

Axiom: the larger the TCB, the more assumptions you
must make (and hence, the more opportunity to have
your assumptions violated).

The Access Matrix

® An access matrix is one way to
represent policy.

® Frequently used mechanism for
describing policy

® Columns are objects, subjects are
rows.

®To determine if S; has right to access
object O,, find the appropriate entry.

®There is a matrix for each right.

® The access matrix is a succinct
descriptor for O(|S|*|O]|) rules

O; |02 |Os3
S |Y |Y |N
;2 N [Y |N
S3 IN |Y |Y

The Access Matrix

® Do systems store the entire access
control matrix? O; |0, |Os3

® Two ways:

® Store with the objects (Access |s, |Y [y [N
control lists (ACL))

® Store with the subjects
(Capability Lists (CL))

26

Access Control

Suppose the private key file for J is
object O1

® Only J can read

Suppose the public key file for J is object
O2

® All can read, only J can modify
Suppose all can read and write from

object O3

What’s the access matrix?

Secrecy

® Does the following
protection state ensure
the secrecy of J's private
key in O17?

o, |0, |O;
] |R |RW|RW
S, R |RW
S, R |RW

Integrity

® Does the following access
matrix protect the integrity of
J’s public key file O27?

o, |0, |O;
] |R |RW|RW
S, R |RW
S, R |RW

Trusted Processes

® Does it matter if we do not
trust some of J’s processes?

® Trojan Horse: Attacker
controlled code run by J
can violate secrecy.

® Confused Deputy: Attacker
may trick trusted code to
violate integrity

RW

RW

RW

RW

30

Protection vs. Security

® Protection

® Security goals met under trusted processes

Protects against an error by a non-malicious entity

® Security

Security goals met under potentially malicious processes
Protects against any malicious entity
Hence, For J:

® Non-malicious process shouldn’t leak the private key by
writing it to O3

® A potentially malicious process that may contain a Trojan
horse that writes the private key to Osshould not be able
to do so

Do you own a computer?

® Linux/ Windows/ Mac?

® (DONOT) execute everything as
the admin user!

® Create a separate ”standard”
user. Why?

® Caveat: Still need to protect the
standard user account.

IF SOMEONE STEALS MY LAPTOP WHILE I'M
LOGGED IN, THEY CAN READ MY EMAIL, TRKE MY
MONEY AND [MPERSONATE. ME TO MY FRENDS,

BUT AT LEAST THEY CANT INSTALL
DRIVERS WITHOUT MY PERMISSION.

32

Principle of Least Privilege

A system should only provide those rights needed to
perform the processes function_ and no more.

Implication 1: you want to reduce the protection
domain to the smallest possible set of objects

Implication 2: you want to assign the minimal set of
rights to each subject

Caveat: of course, you need to provide enough rights
and a large enough protection domain to get the job

done.

33

Least Privilege

® Limit permissions to those
required and no more

® Restrict privilege of the
process of Jto prevent leaks

® Cannot R/W 03

O, |0, | O3
J R |RW |-
S2 R
S; R |RW

Conflicting Goals

® Challenges of building a secure system
® What are the users’ goals?
® What do application developers want?

® What about the data owners
(corporations/governments)?

® What is the purpose of system administrators?

® What about the requirements of operating system
designers?

® Need a satisfying balance among these goals?

35

Access Control Administration

There are two central ways to specify a policy
® Discretionary - object “owners” define policy

® Users have discretion over who has access to what objects
and when (trusted users)

® Canonical example: the UNIX filesystem

—RWX assigned by file owners
® Mandatory - Environment enforces static policy

® Access control policy defined by environment, user has no
control over access control (untrusted users)

® Canonical example: process labeling

® System assigns labels for processes, objects, and a dominance
calculusis used to evaluate rights

DAC vs. MAC

® Discretionary Access Control

® User defines the access policy
® Can pass rights onto other subjects (called delegation)
® Their programs can pass their rights
® Consider a Trojan horse
® Mandatory Access Control

® System defines access policy

® Subjects cannot pass rights

® Subjects’ programs cannot pass rights
® Consider a Trojan horse here

	Default Section
	Slide 1: CIS 6930: IoT Security

	Intro
	Slide 2: Class Notes and Clarifications

	Block ciphers
	Slide 4: SSL/TLS in the Real World
	Slide 5: Network Stack, revisited
	Slide 8: The verifier matters
	Slide 11: Mixed SSL use
	Slide 12: Certificate Validation
	Slide 13: Using self-signed certificates
	Slide 14: Using self-signed certificates
	Slide 15: Hostname Verification
	Slide 16: Access Control
	Slide 17: Policy
	Slide 18: Computer Security Policy Goals
	Slide 19: … when policy goes wrong
	Slide 20: Access Control/Authorization
	Slide 21: Simplified Access Control
	Slide 22: Protection Domains
	Slide 23: Access Policy Enforcement
	Slide 24: Trusted Computing Base (TCB)
	Slide 25: The Access Matrix
	Slide 26: The Access Matrix
	Slide 27: Access Control
	Slide 28: Secrecy
	Slide 29: Integrity
	Slide 30: Trusted Processes
	Slide 31: Protection vs. Security
	Slide 32: Do you own a computer?
	Slide 33: Principle of Least Privilege
	Slide 34: Least Privilege
	Slide 35: Conflicting Goals
	Slide 36: Access Control Administration
	Slide 37: DAC vs. MAC

