
CIS 6930:
IoT Security

Lecture 5

Prof. Kaushal Kafle

1

Spring 2025

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes and Clarifications
• General comments on paper reviews

• Pay attention to the feedback!

• The grading metric also looks at your
improvements, so not repeating mistakes
is key!

• Small problems in implementation vs
larger limitations/drawbacks of the
methodology/framework

• Your comments should match the
accept/reject verdict!

• General comment on discussions

• I expect you to have at least some
thoughts on the research topics we
discuss!

• The point is to express opinions and
engage.

2

Class Notes and Clarifications
• General comments on presentations

• Deeply understand and relay the ideas of
the paper that you are presenting

• If you don’t understand something
yourself, you won’t be able to explain it
to us.

• Understand why the authors are choosing
to do things a certain way.

• Since you are presenting, we’ll assume
you are the author!

• Remember that the presentation is a visual
medium!

3

Public Key Crypto
(10,000 ft view)

4

• Separate keys for encryption and decryption

• Public key: anyone can know this

• Private key: kept confidential

• Anyone can encrypt a message to you using your public key

• The private key (kept confidential) is required to decrypt the
communication

• Alice and Bob no longer have to have a priori shared a secret key

Problem? YES. How do we know if Alice’s key is really Alice’s?

But how do we verify we’re
using the correct public

key?

5

Alice

Bob’s public key is . Trust me.

Not Bob

Short
answer: We

can’t.

6

It’s turtles all
the way down.

Why not just
use a database?

• Every user has his/her own public key and private key.

• Public keys are all published in a database.

• Alice gets Bob’s public key from the database

• Alice encrypts the message and sends it to Bob using
Bob’s public key.

• Bob decrypts it using his private key.

• What’s the problem with this approach?

7

Solving the
Turtles Problem
• We need a trust anchor

• there must be someone with
authority

• requires a priori trust

• Solution: form a trust
hierarchy

• “I believe X because...”

• “Y vouches for X and...”

• “Z vouches for Y and...”

• “I implicitly trust Z.”

8

Browser
Certificate

9

What’s a certificate?
• A certificate …

• … makes an association between an identity
and a private key

• … contains public key information {e,n}

• … has a validity period

• … is signed by some certificate authority (CA)

• … identity may have been vetted by a
registration authority (RA)

• People trust CA (e.g., Verisign) to vet identity

10

Why do I trust the certificate?

• A collections of “root” CA certificates (self-signed)

•… baked into your browser

•… vetted by the browser manufacturer

•… supposedly closely guarded

• trust anchor

• Root certificates used to validate certificate

•Vouches for certificate’s authenticity

11

12

Public Key
Infrastructure

•Hierarchy of keys used to authenticate
certificates

•Requires a root of trust (i.e., a trust anchor)

14

What is a PKI?
• Rooted tree of

CAs

• Cascading
issuance

• Any CA can
issue cert

• CAs issue certs
for children

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …
15

*

*.usf.edu

*.cs.
usf.
edu

*.chase.com

Certificate Validation

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …

Certificate

Signature

16

*

*.usf.edu

*.cs.usf.edu

PKIs in Reality

17

Obtaining a Certificate
1.Alice has some identity document AID and generates a keypair (A-,

A+)

2.A → CA : {A+, AID}, Sig(A-, {A+, AID})

• CA verifies signature -- proves Alice has A-

• CA may (and should!) also verify AID offline

3.CA signs {A+, AID} with its private key (CA-)

• CA attests to binding between A+ and AID

4.CA → A : {A+, AID}, Sig(CA-, {A+, AID})

• this is the certificate; Alice can freely publish it

• anyone who knows CA+ (and can therefore validate the CA’s
signature) knows that CA “attested to” {A+, AID}

• note that CA never learns A-

18

19

• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Is this problematic?

20

The DigiNotar Incident

DigiNotar Incident

• DigiNotar is a CA based in
the Netherlands that is
(well, was) trusted by
most OSes and browsers

• July 2011: Issued fake
certificate for gmail.com
to site in Iran that ran
MitM attack...

• ... this fooled most
browsers, but...

21

DigiNotar Incident

22

• As added security
measure, Google
Chrome hardcodes
fingerprint of
Google’s certificate

• Since DigiNotar
didn’t issue
Google’s true
certificate, this
caused an error
message in
Chrome

How secure is the verifier?

• What happens if attacker is able to insert his
public root CA key to the verifier’s list of trusted
CAs?

• More generally, what are the consequences if the
verifier is compromised?

• Q: What’s the consequences for IoT devices/apps?

23

Eavesdropping

25

Alice’s Switch

Internet

Bob’s Switch

Why is crypto useful?

26

Why is this bad?
Alice uses the Internet for:

• Email

• Banking
• Online shopping
• Social networking

• …

• Its just an instant message, right?

28

Let’s use that crypto stuff
• Let’s build some new protocols

• HTTP → SecureHTTP

• POP → POPSecure

• IMAP → CryptoIMAP

• SMTP → SMTPSec

• FTP → FTPS

• Jabber → SecJabber

• Telnet → TelCryptNet

Let’s build a crypto-
wrapper standard
instead

IP Packet

Security Layer

2

9

Unencrypted
Protocol

What properties should this
crypto-wrapper have?

• Confidentiality

• Integrity

• Authenticity

• Server

• Client

• Mutual authentication

30

SSL / TLS

31

History

32

• Secure Sockets Layer (SSL) developed by Netscape (remember them?) in
1995

• Version 1 never released

• Version 2 incorporated into Netscape Navigator 1.1

• Microsoft fixes vulnerabilities in SSLv2 and introduces Private
Communications Technology (PCT) protocol

• Netscape overhauls SSLv2, fixing some more security issues, and releases
SSLv3

• IETF takes over and releases Transport Layer Security (TLS), a non-
interoperable upgrade to SSLv3

• current version is TLS version 1.3, RFC 8446 (August 2018)

https://tools.ietf.org/html/rfc8446

K.I.S.S.

• Application-layer
protocol

• Operates over TCP --
WHY?

33

Overview
• Alice (client) initiates conversation with Bob (server)

• Bob sends Alice his certificate

• Alice verifies certificate

• Alice picks a random number S and sends it to Bob,
encrypted with Bob’s public key

• Both parties derive key material from S

• Client and server exchange encrypted and integrity-
protected data

34

SSLv2 Handshake

35

ClientHello, Version, Cipher list., RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Alice randomly chooses S,
the “pre-master secret”Alice computes

master secret k as
K=f(S,RAlice,RBob)

Bob computes master
secret k as
K=f(S,RAlice,RBob)

Encryption and
integrity keys derived
from Master Secret

Nonce

Cryptographic Parameters
• Generated from
• the master secret K
• Rc
• Rs

• Six values to be generated

• client authentication and encryption keys

• server authentication and encryption keys

• client encryption IV

• server encryption IV
• Generator functions: ki = gi(K,Rc,Rs)

36

Authentication

37

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Q: Which parties
are authenticated?

Cipher Suites

38

• Alice gives Bob a
list of supported
cipher suites;
Bob makes final
choice

• Includes
encryption
algorithms, key
length, block
mode, and
integrity
checksum
algorithm

• Only 5 supported
in TLS1.3, >30 in
TLS1.2

% openssl ciphers –v

TLS_AES_256_GCM_SHA384 TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD

TLS_CHACHA20_POLY1305_SHA256 TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD

TLS_AES_128_GCM_SHA256 TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD

ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD

ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD

DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD

ECDHE-ECDSA-CHACHA20-POLY1305 TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

ECDHE-RSA-CHACHA20-POLY1305 TLSv1.2 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

DHE-RSA-CHACHA20-POLY1305 TLSv1.2 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

..

..

..

• Key Exchange algos e.g. RSA, DH, ECDH

• Authentication algos e.g., RSA

• Bulk encryption algos e.g., AES

• MAC algos e.g., SHA-256

SSLv2 Problems

39

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

Alice Bob
Weakest ciphers

E(K’,Data)

SSLv3 Fixes

40

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S), hK(all prior handshake msgs)

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob

Keyed hash over previous
messages ensures

integrity protection

SSL/TLS with
Server and Client Authentication

41

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., CertBob, Cipher, RBob

E(Bob+,S), CertAlice

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob
CertRequest

Sig(Alice-,hK(all prior handshake msgs))

Signature proves Alice
knows private key

associated with
her certificate

42

Problems with TLS/SSL

If Bob’s cert isn’t verified, how do you know
you’re actually talking to Bob?

43

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

44

Solution: Use a PKI

45

• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Do you recall why this is problematic?

46

Recall: The DigiNotar Incident

SSL/TLS in the
Real World

49

Network Stack, revisited

50

Physical

Link

Network

Transport

Application

SSL/TLS

SSL/TLS in the Real World

51

• All (modern) browsers support TLS 1.2, TLS1.3

• SSLv3 deprecated in most major browsers

• Client authentication very rare -- WHY?

• Implementations:

• HTTP (80) → HTTPS (443)

• POP (110) → POP3S (995)

• IMAP (143) → IMAPS (993)

• SMTP (25) → SMTP with SSL (465)

• FTP (20,21)→ FTPS (989,990)

• Telnet (23) → Telnets (992)

SSL/TLS and the Web

52

Web
Browser

Web
Server

• HTTPS: Tunnel HTTP over SSL/TLS

• Add golden lock symbol

Supported ciphers

Chosen cipher

Certificate

Generate shared secret keys

Transfer HTTP over SSL channel

The verifier matters
• SSL is an application layer protocol

• Software developers must use it correctly

• Smartphone World

• Possibly millions of
applications that use SSL

• Many apps do not verify
certificates correctly –
Implications?

• Developers change default
configuration – WHY?

• Pre-Smartphone World

• Small set of
applications that use
SSL (E.g., Web
Browser)

• Lots of attention to
those apps

53

SSL Verification in Apps
• Even popular apps are vulnerable to incorrect SSL use

• Banking

• Document storage

• Social Networks (Facebook, before Firesheep)

• …..and IoT apps

• ...

• Common mistakes: Generally, in HTTPS use.

1. Not using SSL

2. Mixed SSL use

3. Accepting all certificates

4. Accepting all hostnames (i.e., regardless of the CN)

5. Trusting all CAs

54

Not using SSL

• What happens when you don’t use SSL? E.g.,

• If I can guess, infer, or steal the session ID, game over

• Are there any use cases where not using SSL would be
okay?

• It depends. However, unless confidentiality and
authenticity are never going to be important to the
app, use SSL!

55

http://www.mybank.com/loggedin?sessionid=11

Lesson 1: Always use SSL (i.e., mostly HTTPS)

http://www.mybank.com/loggedin?sessionid=11

Mixed SSL use

• Mixed use of HTTP and HTTPS on the same site.

• Use case 1: Login page is not HTTPS, but the login form is
submitted to a HTTPS page.

• MiTM can replace HTTPS links with HTTP (i.e., SSL Stripping)

• Use case 2: Login page is HTTPS, but the rest of the website
may be HTTP

• Unencrypted cookies/session IDs! (e.g., Firesheep)

56

Lesson 2: Use HTTPS throughout

Certificate Validation
• Apps can override the TrustManager interface

• What is wrong with this example? It accepts all server
certificates!

57

Lesson 3: Always validate the server’s certificate

https://stackoverfl
ow.com/questions
/2703161/how-to-
ignore-ssl-
certificate-errors-
in-apache-
httpclient-4-0

https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0

Using self-signed certificates

• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.

58

Step 1: Read in your

certificate

Step 2: Create

custom TrustManager

Step 3: Compare

server certificate with

the hard-coded one

Using self-signed certificates
• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.

• Allows secure use of self-signed certificates

• Variation:

• Pinning own CA certificate

• Gives you more flexibility.

• How to change the certificate?

• App updates!

• Don’t have to trust 100s of Root CAs!

59

Lesson 4: Certificate pinning, if done correctly,

is more secure than default SSL use.

Hostname Verification
• Back to basics: What does a certificate provide?

• Binding between a public key and identity

• Any certificate issued by any trusted CA will be accepted!

• i.e., HostName= google.com, but cert has CN=foogle.com?

60

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

✓
Lesson 5: Never override the HostNameVerifier

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

	Default Section
	Slide 1: CIS 6930: IoT Security

	Intro
	Slide 2: Class Notes and Clarifications
	Slide 3: Class Notes and Clarifications

	Block ciphers
	Slide 4: Public Key Crypto (10,000 ft view)
	Slide 5: But how do we verify we’re using the correct public key?
	Slide 6: Short answer: We can’t.
	Slide 7: Why not just use a database?
	Slide 8: Solving the Turtles Problem
	Slide 9: Browser Certificate
	Slide 10: What’s a certificate?
	Slide 11: Why do I trust the certificate?
	Slide 12
	Slide 13
	Slide 14: Public Key Infrastructure
	Slide 15: What is a PKI?
	Slide 16: Certificate Validation
	Slide 17: PKIs in Reality
	Slide 18: Obtaining a Certificate
	Slide 19
	Slide 20: The DigiNotar Incident
	Slide 21: DigiNotar Incident
	Slide 22: DigiNotar Incident
	Slide 23: How secure is the verifier?
	Slide 25: Eavesdropping
	Slide 26: Why is crypto useful?
	Slide 27: Why is this bad?
	Slide 28: Let’s use that crypto stuff
	Slide 29
	Slide 30: What properties should this crypto-wrapper have?
	Slide 31: SSL / TLS
	Slide 32: History
	Slide 33: K.I.S.S.
	Slide 34: Overview
	Slide 35: SSLv2 Handshake
	Slide 36: Cryptographic Parameters
	Slide 37: Authentication
	Slide 38: Cipher Suites
	Slide 39: SSLv2 Problems
	Slide 40: SSLv3 Fixes
	Slide 41: SSL/TLS with Server and Client Authentication
	Slide 42: Problems with TLS/SSL
	Slide 43: If Bob’s cert isn’t verified, how do you know you’re actually talking to Bob?
	Slide 44: Solution: Use a PKI
	Slide 45
	Slide 46: Recall: The DigiNotar Incident
	Slide 49: SSL/TLS in the Real World
	Slide 50: Network Stack, revisited
	Slide 51: SSL/TLS in the Real World
	Slide 52: SSL/TLS and the Web
	Slide 53: The verifier matters
	Slide 54: SSL Verification in Apps
	Slide 55: Not using SSL
	Slide 56: Mixed SSL use
	Slide 57: Certificate Validation
	Slide 58: Using self-signed certificates
	Slide 59: Using self-signed certificates
	Slide 60: Hostname Verification

