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Class Notes and Clarifications
• General comments on paper reviews

• Pay attention to the feedback! 

• The grading metric also looks at your 
improvements, so not repeating mistakes 
is key! 

• Small problems in implementation vs 
larger limitations/drawbacks of the 
methodology/framework

• Your comments should match the 
accept/reject verdict!

• General comment on discussions

• I expect you to have at least some 
thoughts on the research topics we 
discuss! 

• The point is to express opinions and 
engage. 
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Class Notes and Clarifications
• General comments on presentations

• Deeply understand and relay the ideas of 
the paper that you are presenting

• If you don’t understand something 
yourself, you won’t be able to explain it 
to us. 

• Understand why the authors are choosing 
to do things a certain way. 

• Since you are presenting, we’ll assume 
you are the author!

• Remember that the presentation is a visual 
medium! 
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Public Key Crypto
(10,000 ft view)
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• Separate keys for encryption and decryption

• Public key:  anyone can know this

• Private key:  kept confidential

• Anyone can encrypt a message to you using your public key

• The private key (kept confidential) is required to decrypt the 
communication

• Alice and Bob no longer have to have a priori shared a secret key

Problem? YES. How do we know if Alice’s key is really Alice’s?



But how do we verify we’re 
using the correct public 

key?
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Alice

Bob’s public key is              . Trust me.

Not Bob



Short 
answer:  We 

can’t.
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It’s turtles all 
the way down.



Why not just 
use a database?

• Every user has his/her own public key and private key.  

• Public keys are all published in a database.

• Alice gets Bob’s public key from the database

• Alice encrypts the message and sends it to Bob using 
Bob’s public key.

• Bob decrypts it using his private key.

• What’s the problem with this approach?

7



Solving the 
Turtles Problem
• We need a trust anchor

• there must be someone with 
authority

• requires a priori trust

• Solution:  form a trust 
hierarchy

• “I believe X because...”

• “Y vouches for X and...”

• “Z vouches for Y and...” 

• “I implicitly trust Z.”
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Browser
Certificate
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What’s a certificate?
• A certificate …

• … makes an association between an identity 
and a private key

• … contains public key information {e,n}

• … has a validity period

• … is signed by some certificate authority (CA)

• … identity may have been vetted by a 
registration authority (RA)

• People trust CA (e.g., Verisign) to vet identity
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Why do I trust the certificate?

• A collections of “root” CA certificates (self-signed)

•… baked into your browser

•… vetted by the browser manufacturer

•… supposedly closely guarded

• trust anchor

• Root certificates used to validate certificate

•Vouches for certificate’s authenticity
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Public Key 
Infrastructure

•Hierarchy of keys used to authenticate 
certificates

•Requires a root of trust (i.e., a trust anchor)
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What is a PKI?
• Rooted tree of 

CAs

• Cascading 
issuance

• Any CA can 
issue cert

• CAs issue certs 
for children

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …
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Certificate Validation

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …

Certificate

Signature
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PKIs in Reality
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Obtaining a Certificate
1.Alice has some identity document AID and generates a keypair (A-, 

A+)

2.A → CA :  {A+, AID}, Sig(A-, {A+, AID})

• CA verifies signature -- proves Alice has A-

• CA may (and should!) also verify AID offline

3.CA signs {A+, AID} with its private key (CA-)

• CA attests to binding between A+ and AID

4.CA → A : {A+, AID}, Sig(CA-, {A+, AID})

• this is the certificate;  Alice can freely publish it

• anyone who knows CA+ (and can therefore validate the CA’s 
signature) knows that CA “attested to” {A+, AID}

• note that CA never learns A-
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• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Is this problematic?
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The DigiNotar Incident



DigiNotar Incident

• DigiNotar is a CA based in 
the Netherlands that is 
(well, was) trusted by 
most OSes and browsers

• July 2011:  Issued fake 
certificate for gmail.com 
to site in Iran that ran 
MitM attack...

• ... this fooled most 
browsers, but...
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DigiNotar Incident
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• As added security 
measure, Google 
Chrome hardcodes 
fingerprint of 
Google’s certificate

• Since DigiNotar 
didn’t issue 
Google’s true 
certificate, this 
caused an error 
message in 
Chrome



How secure is the verifier?

• What happens if attacker is able to insert his 
public root CA key to the verifier’s list of trusted 
CAs?

• More generally, what are the consequences if the 
verifier is compromised?

• Q: What’s the consequences for IoT devices/apps?
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Eavesdropping
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Alice’s Switch

Internet

Bob’s Switch



Why is crypto useful?
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Why is this bad?
Alice uses the Internet for:

• Email

• Banking
• Online shopping
• Social networking

• …

• Its just an instant message, right?
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Let’s use that crypto stuff
• Let’s build some new protocols

• HTTP → SecureHTTP

• POP → POPSecure

• IMAP → CryptoIMAP

• SMTP → SMTPSec

• FTP → FTPS

• Jabber → SecJabber

• Telnet → TelCryptNet

Let’s build a crypto-
wrapper standard 
instead



IP Packet

Security Layer

2

9

Unencrypted
Protocol



What properties should this 
crypto-wrapper have?

• Confidentiality

• Integrity

• Authenticity

• Server

• Client

• Mutual authentication
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SSL / TLS
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History

32

• Secure Sockets Layer (SSL) developed by Netscape (remember them?) in 
1995

• Version 1 never released

• Version 2 incorporated into Netscape Navigator 1.1

• Microsoft fixes vulnerabilities in SSLv2 and introduces Private 
Communications Technology (PCT) protocol

• Netscape overhauls SSLv2, fixing some more security issues, and releases 
SSLv3

• IETF takes over and releases Transport Layer Security (TLS), a non-
interoperable upgrade to SSLv3

• current version is TLS version 1.3, RFC 8446 (August 2018)

https://tools.ietf.org/html/rfc8446


K.I.S.S.

• Application-layer 
protocol

• Operates over TCP --
WHY?
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Overview
• Alice (client) initiates conversation with Bob (server)

• Bob sends Alice his certificate

• Alice verifies certificate

• Alice picks a random number S and sends it to Bob, 
encrypted with Bob’s public key

• Both parties derive key material from S

• Client and server exchange encrypted and integrity-
protected data
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SSLv2 Handshake
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ClientHello, Version, Cipher list., RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Alice randomly chooses S, 
the “pre-master secret”Alice computes 

master secret k as
K=f(S,RAlice,RBob) 

Bob computes master 
secret k as
K=f(S,RAlice,RBob) 

Encryption and 
integrity keys derived 
from Master Secret

Nonce



Cryptographic Parameters
• Generated from
• the master secret K
• Rc
• Rs

• Six values to be generated

• client authentication and encryption keys

• server authentication and encryption keys

• client encryption IV 

• server encryption IV
• Generator functions: ki = gi(K,Rc,Rs)
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Authentication
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Q: Which parties 
are authenticated?



Cipher Suites
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• Alice gives Bob a 
list of supported 
cipher suites;  
Bob makes final 
choice

• Includes 
encryption 
algorithms, key 
length, block 
mode, and 
integrity 
checksum 
algorithm

• Only 5 supported 
in TLS1.3, >30 in 
TLS1.2

% openssl ciphers –v

TLS_AES_256_GCM_SHA384   TLSv1.3 Kx=any   Au=any   Enc=AESGCM(256) Mac=AEAD

TLS_CHACHA20_POLY1305_SHA256  TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD

TLS_AES_128_GCM_SHA256   TLSv1.3 Kx=any    Au=any   Enc=AESGCM(128)      Mac=AEAD

ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH   Au=ECDSA Enc=AESGCM(256) Mac=AEAD

ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH  Au=RSA   Enc=AESGCM(256)   Mac=AEAD

DHE-RSA-AES256-GCM-SHA384      TLSv1.2 Kx=DH       Au=RSA   Enc=AESGCM(256)   Mac=AEAD

ECDHE-ECDSA-CHACHA20-POLY1305 TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

ECDHE-RSA-CHACHA20-POLY1305  TLSv1.2 Kx=ECDH  Au=RSA  Enc=CHACHA20/POLY1305(256) Mac=AEAD

DHE-RSA-CHACHA20-POLY1305  TLSv1.2 Kx=DH   Au=RSA   Enc=CHACHA20/POLY1305(256) Mac=AEAD

..

..

..

• Key Exchange algos e.g. RSA, DH, ECDH

• Authentication algos e.g., RSA

• Bulk encryption algos e.g., AES

• MAC algos e.g., SHA-256



SSLv2 Problems
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

Alice Bob
Weakest ciphers

E(K’,Data)



SSLv3 Fixes
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S), hK(all prior handshake msgs)

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob

Keyed hash over previous
messages ensures 

integrity protection



SSL/TLS with 
Server and Client Authentication
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., CertBob, Cipher, RBob

E(Bob+,S), CertAlice

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob
CertRequest

Sig(Alice-,hK(all prior handshake msgs))

Signature proves Alice 
knows private key 

associated with 
her certificate
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Problems with TLS/SSL



If Bob’s cert isn’t verified, how do you know 
you’re actually talking to Bob?
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob
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Solution:  Use a PKI
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• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Do you recall why this is problematic?
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Recall: The DigiNotar Incident



SSL/TLS in the 
Real World
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Network Stack, revisited
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Physical

Link

Network

Transport

Application

SSL/TLS



SSL/TLS in the Real World
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• All (modern) browsers support TLS 1.2, TLS1.3

• SSLv3 deprecated in most major browsers

• Client authentication very rare  -- WHY?

• Implementations:

• HTTP (80) → HTTPS (443)

• POP (110) → POP3S (995)

• IMAP (143) → IMAPS (993)

• SMTP (25) → SMTP with SSL (465)

• FTP (20,21)→ FTPS (989,990)

• Telnet (23) → Telnets (992)



SSL/TLS and the Web
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Web
Browser

Web
Server

• HTTPS:  Tunnel HTTP over SSL/TLS

• Add golden lock symbol

Supported ciphers

Chosen cipher

Certificate

Generate shared secret keys

Transfer HTTP over SSL channel



The verifier matters
• SSL is an application layer protocol

• Software developers must use it correctly

• Smartphone World

• Possibly millions of 
applications that use SSL

• Many apps do not verify 
certificates correctly – 
Implications?

• Developers change default 
configuration – WHY?

• Pre-Smartphone World

• Small set of 
applications that use 
SSL (E.g., Web 
Browser)

• Lots of attention to 
those apps
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SSL Verification in Apps
• Even popular apps are vulnerable to incorrect SSL use

• Banking

• Document storage

• Social Networks (Facebook, before Firesheep)

• …..and IoT apps

• ...

• Common mistakes: Generally, in HTTPS use.

1. Not using SSL

2. Mixed SSL use

3. Accepting all certificates

4. Accepting all hostnames (i.e., regardless of the CN)

5. Trusting all CAs
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Not using SSL

• What happens when you don’t use SSL? E.g., 

• If I can guess, infer, or steal the session ID, game over

• Are there any use cases where not using SSL would be 
okay?

• It depends. However, unless confidentiality and 
authenticity are never going to be important to the 
app, use SSL!
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http://www.mybank.com/loggedin?sessionid=11

Lesson 1: Always use SSL (i.e., mostly HTTPS)

http://www.mybank.com/loggedin?sessionid=11


Mixed SSL use

• Mixed use of HTTP and HTTPS on the same site.

• Use case 1: Login page is not HTTPS, but the login form is 
submitted to a HTTPS page.

• MiTM can replace HTTPS links with HTTP (i.e., SSL Stripping)

• Use case 2: Login page is HTTPS, but the rest of the website 
may be HTTP

• Unencrypted cookies/session IDs! (e.g., Firesheep)
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Lesson 2: Use HTTPS throughout



Certificate Validation
• Apps can override the TrustManager interface

• What is wrong with this example? It accepts all server 
certificates!
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Lesson 3: Always validate the server’s certificate 

https://stackoverfl
ow.com/questions
/2703161/how-to-
ignore-ssl-
certificate-errors-
in-apache-
httpclient-4-0

https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0


Using self-signed certificates

• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.
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Step 1:  Read in your 

certificate

Step 2:  Create 

custom TrustManager

Step 3: Compare 

server certificate with 

the hard-coded one



Using self-signed certificates
• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.

• Allows secure use of self-signed certificates

• Variation:

• Pinning own CA certificate 

• Gives you more flexibility.

• How to change the certificate? 

• App updates!

• Don’t have to trust 100s of Root CAs!
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Lesson 4: Certificate pinning, if done correctly, 

is more secure than default SSL use.



Hostname Verification
• Back to basics: What does a certificate provide?

• Binding between a public key and identity

• Any certificate issued by any trusted CA will be accepted!

• i.e., HostName= google.com, but cert has CN=foogle.com?
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https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

✓
Lesson 5: Never override the HostNameVerifier

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1
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