CIS 6930:
loT Security

Lecture 4

Prof. Kaushal Kafle

Spring 2025

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes and Clarifications

® Using Latex
® Learnit!
® Useful forever!

® Research proposal due today!

® Any questions!?

What encryption
does and does not

® Does:

® confidentiality

® Doesn’t do:
® dataintegrity
® source authentication

® Need: ensure that data is not altered and is from
an authenticated source

Principals

Src=Alice, Dest=Bob
Msg = “security is fun!”

tve

Man-in-the-Middle (MitM) attack

Src=Alice, Dest=Bob Src=Alice, Dest=Bob
Msg = “security is fun!” Msg = “security is not fun!”

S

Alice tve

* For confidentiality, just encrypt.

* How do we ensure integrity?

Message Authentication Codes
(MACs)

® MACs provide message integrity and authenticity

® MACK(M) — use symmetric encryption to produce short sequence
of bits that depends on both the message (M) and the key (K)

® MAGs should be resistant to existential forgery: Eve should not be
able to produce a valid MAC for a message M' without knowing K

® To provide confidentiality, authenticity, and integrity of a message,

Alice sends
o

Ex(M,MACk(M)) where Ex(X) is the encryption of X using key K

® Proves that M was encrypted (confidentiality and integrity) by
someone who knew K (authenticity)

Why are we sending M?

Message Authenticity

rc = Alice, Dest = Bob rc = Alice, Dest = Bob
sg = {"security is fun", sg = {"security isn't funl", 22?7}

ACk("security is fun!")}

' N

>

Alice Eve

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

Encryption and Message
Authenticity

c = Alice, Dest = Bob
sg = Ex{{"security is fun”,

ACk2("security is fun!")}}

@
7=)

‘T

>

Alice tve
Without knowing k1,
Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Cryptographic Hash Functions

® Hash function h: deterministic one-way function that
takes as input an arbitrary message M (sometimes
called a preimage) and returns as output h (M), a small
fixed length hash (sometimes called a digest)

® Hash functions should have the following two
properties:

® compression: reduces arbitrary length string to fixed

length hash

® ease of computation: given message M, h (M) is easy

to compute

Hash functions are usually fairly inexpensive

(i.e., compared with public key cryptography)

N openssl speed sha256

Doing sha256 ops for 3s or 16 size blocks: 33515432 sha256 ops n 3.00s

Doing sha256 ops for 3s or 64 size blocks: 29299431 sha256 ops 'n 2.99s

Doing sha256 ops for 3s or 256 size blocks: 19059503 sha256 ops in 3.00s

Doing sha256 ops for 3s or 1024 size blocks: 7433662 sha256 ops in 3.00s

Doing sha256 ops for 3s or 8192 size blocks: 1104810 sha256 ops in 3.00s

Doing sha256 ops for 3s or 16384 size blocks: 559814 sha256 ops in 2.99s

version: 3.3.1

built on: Tue Jun 4 12:53:04 2024 UTC

options: bn(64,64)

compiler: clang —-fPIC -arch arm64 —03 -Wall -DL_ENDIAN -DOPENSSL_PIC -D_REENTRANT
CPUINFO: OPENSSL_armcap=0x987d

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 163
sha256 178748.97k 627145.01k 1626410.92k 2537356.63k 3016867.84k 30

ED |

Why might hashes be useful?

® Message authentication codes (MACs):
®eg. MACk (M) = h(K|M)
(but don't do this, use HMAC instead)

® Modification detection codes:
® detect modification of data
® any change in data will cause change in hash

Prof. Pedantic proposes the following
hash function, arguing that it offers both
compression and ease of computation.

® h(M) = 0 if the number of Os in M is divisible
oy 3

® h(M) = 1 otherwise

Why is this a lousy crypto hash function?

Cryptographic Hash Functions

® Properties of good cryptographic hash functions:

® preimage resistance: given digesty, computationally

infeasible to find preimage x' such that h(x')=y
(also called “one-way property”)

® 2nd-preimage resistance: given preimage x, computationally
infeasible to find preimage x' such that h(x)=h(x')
(also called “weak collision resistance”)

® collision resistance: computationally infeasible to find

preimages i,j such that h(i)=h(j)
(also called “strong collision resistance”)

Birthday Attack

® Birthday Paradox: chances that 2+ people share
birthday in group of 23 is > 50%.

® General formulation

® function f() whose output is uniformly distributed over H
possible outputs

® Number of experiments Q(H) until we find a collision is
approximately:

Q(H

m
)~ o H
(s
Q(365) ~ || 7 365 = 23.94

® Why is this relevant to hash sizes?

® Eg.,

See: https://betterexplained.com/articles/understanding-the-birthday-paradox/

https://betterexplained.com/articles/understanding-the-birthday-paradox/

Practical
Implications

Choosing two messages that
have the same hash h(x) = h(x’)
is more practical than you might
think.

Example attack: secretary is
asked to write a “bad” letter, but
wants to replace with a “good”
letter.

® Boss signs the letter after
reading

Find collision between
2737 ‘good’ vs 2737
‘bad’ letters

Dear Anthony,

This letter is X you to) [(Mr. P.
I am writing to introduce)i, you s Alfred __

new

chief X our
Barton, the newly appointed senior jewellery buyer for the

Europeanl J area

(will take
Europe | |division|

jthel
. He[has taken

Northern { over 1 --J

all

R .) watches and jewellery
responsibility for the whole of our interests in

jewellery and watches

every

area
} him {all the} help he {

afford
region }

may need
give }

. Please { needs

in the {

modern
up to date

o+

seek out
° find

to
} the most { } lines for the {hié;} end of the

empowered
authorized

samples

specimens} of the

market. He is { } to receive on our behalf {

up limit |

[latest] [watch and jewelleryl [
products, |gypject| '° 2 |maximum|

|newest| |jewellery and watch|

letter

carry
document

of ten thousand dollars. He will {hold} a signed copy of this {

. i i i i . . appended
as proof of identity. An order with his signature, which is | itached
authorizes X above

allows you to charge the cost to this company at the ho.4 office

fully level i . .
address. We { __ } expect that our {volume} of orders will increase in
following trust X A be

the next year and hope that the new appointment will prove

advantageous
an advantage

} to both our companies.

Figure 11.7 A Letter in 237 Variations

(from Stallings, Crypto and Net Security)

Some common cryptographic

hash functions
D5 (128-bit digest) [don’t use this]
A-1 (160-bit digest) [stop using this*]
A-256 (256-bit digest)
A-512 (512-bit digest)

A-3 [recent competition winner]

General Structure of Hash

Yo 61 Yr1
b b b
f f f > 84}
IV = n n n n
—< e o o —r
o CV; CVi_
IV = Initial value = number of input blocks
CV; = chaining variable n = length of hash code
Y; = ithinput block b = length of input block
f = compression algorithm

(from Stallings, Crypto and Net Security)

Message Extension Attack

® Why is MAC,(M) = H(k|M) bad?
® How can Eve append M’ to M?
® Goal: compute H(k|M |M’) without knowing k
® Solution: Use H(k|M) as IV for next f iteration in H()

A Better MAC

® Objectives
® Use available hash functions without modification

® Easily replace embedded hash function as more secure
ones are found

® Preserve original performance of hash function
® Easy to use

HMAC

HMAC(k, M)

!

H(kBopad | | H(kDipad || M))

dash2 - hashl

® Attacker cannot extend MAC as
before

® Tryitout!

I

b bits

» &

b bits

K" ipad & 0x363636...

I

'y

P <

>

Si

]E(()

Y1

v

opad3 0x5C5C5C

+ n bits

Kt
— Lz |

!

v

Hash

n bits

o H(S; 1| M)

pad to b bits

A 4

v

So
Iv n bi':ts

...

Hash

n bits
] HMAC(K, M)

(from Stallings, Crypto and Net Security)

b bits

Yia

20

Basic truths of cryptography

® Cryptography is not frequently
the source of security
problems

® Algorithms are well known and
widely studied

Vetted through crypto
community

Avoid any “proprietary”
encryption

Claims of “new technology” or
“perfect security” are almost
assuredly snake oil

21

Building systems/apps with
cryptography

® Use quality libraries
® SSLeay, cryptolib, openssl

® Find out what cryptographers think of a
package before using it

® Code review like crazy

® Educate yourself on how to use library

® Understand caveats by original designer and
programmer

22

Encryption and Message

Authenticity
rc = Alice, Dest = Bob WhaT'S The har'd

sg = Ex{{"network security is fun”,

ACk2("network security is funl")}} pa r'.r?

2 8

6;{, S

Alice Eve

Without knowing k1, Eve can’t read Alice’s message.

—

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

23

Private-key crypto is like a door lock

Public Key Crypto
(10,000 ft view)

® Separate keys for encryption and decryption

® Public key: anyone can know this
® Private key: kept confidential

® Anyone can encrypt a message to you using your
public key

® The private key (kept confidential) is required to
decrypt the communication

® Alice and Bob no longer have to have a priori shared a
secret key

Public Key Cryptography

® Each key pair consists of a public and
private component: k™ (public key), k
(private key)

Dy (Ei+(m)) =m

® Public keys are distributed (typically)
through public key certificates

® Anyone can communicate secretly with
you if they have your certificate

RSA

(Rivest, Shamir, Adelman)

® The dominant public key
algorithm

® The algorithm itself is
conceptually simple

® Why it is secure is very
deep (number theory)

® Uses properties of
exponentiation modulo a
product of large primes

"A method for obtaining Digital
Signatures and Public Key
Cryptosystems”, Communications of

the ACM, Feb. 1978.

27

Modular Arithmetic

® IntegersZn=1{0, 1, 2, ..., n-1}

® x mod n = remainder of x divided by n
® 5mod13=5
® 13mod5=3

® yis modular inverse of x iff xy mod n =1
® E.g.Zu1->4is inverse of 3, 5is inverse of 9, 7 is inverse of 8

® If nis prime, then Z» has modular inverses for all integers
except O

Euler’s Totient Function

® coprime: having no common positive factors other than 1 (also

called relatively prime)
® 16 and 25 are coprime
® 6 and 27 are not coprime

® Euler’s Totient Function: ®(n) = number of integers less than
or equal to n that are coprime with n

1
®(n)=n-[[1-2)
o=,

where product ranges over distinct primes dividing n

® If m and n are coprime, then ®(mn) = ®(m)D(n)

® If mis prime, then ®(m)=m -1

Euler’s Totient Function

1
o(n) =n-[J0-)

pln

®(18) = ¢(3%-2') = 18(1 — %)(1 —~ %) =6

For primes and co-primes:

If m and n are coprime, then ®(mn) = ®(m)D(n)

If m is prime, then ®(m)=m-1

B WPNE

RSA Key Generation

. Choose distinct primes p and g
. Compute n = pq
. Compute ®O(n) = O(pq) =

O(p)Dd(a)= (p-1)(g-1)

. Randomly choose 1<e< ®(pq)

such that e and ®(pq) are
coprime. e is the public key
exponent

. Compute d=e* mod(®(pq)).

d is the private key exponent

ExamEIe:

let p=3, q=11
n=33

®(pg)=(3-1)(11-1)=20

let e=7

ed mod ®(pqg) =1
7d mod 20 =1
d=3

RSA Encryption/Decryption

® Public key k* is {e,n} and private key kis {d,n}
® Encryption and Decryption
E..(M) : ciphertext = plaintext® mod n
D, (ciphertext) : plaintext = ciphertext? mod n
® Example
® Public key (7,33), Private Key (3,33)

® Plaintext: 4

® £({7,33},4) = 47 mod 33 = 16384 mod 33 = 16
® D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4

Is RSA Secure?

® {e,n}is public information
® If you could factor n into p*q, then
® could compute ¢(n) =(p-1)(g-1)

® could compute d = e mod ¢(n)
® would know the private key <d,n>!
® But: factoring large integers is hard!

® classical problem worked on for centuries; no
known reliable, fast method

33

Security (Cont’ d)

® At present, key sizes of 1024 bits are considered
to be secure, but 2048 bits is better

® Tips for making n difficult to factor

1 . p and g lengths should be similar (ex.: ~500
bits each if key is 1024 bits)

2 .both (p-1) and (g-1) should contain a “large”
prime factor

3 .gcd(p-1, g-1) should be “small”
4. d should be larger than n1/4

34

RSA

® Most public key systems use at least 1,024-bit keys
® Key size not comparable to symmetric key algorithms
® RSA is much slower than most symmetric crypto algorithms
® AES: ~161 MB/s
® RSA: ~82 KB/s
® This is too slow to use for modern network communication!

® Solution: Use hybrid model

35

Hybrid Cryptosystems

® In practice, public-key cryptography is used to secure and
distribute session keys.

® These keys are used with symmetric algorithms for
communication.

® Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

® Receiver decrypts the message to recover the session key.

® Both encrypt/decrypt their communications using the
same key.

® Key is destroyed in the end.

Hybrid Cryptosystems

rc = Alice, Dest = Bob
sg = Ee+(k), Ex("Network security is fun!")

2

Alice

(B*,B’) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

37

Public Key Cryptography

® Each key pair consists of a public and
private component: k™ (public key), k
(private key)

Dy (Ei+(m)) =m

What happens if we flip the order?

Encryption using private key

® Encryption and Decryption
E. (M) : ciphertext = plaintext® mod n
D,.(ciphertext) : plaintext = ciphertext® mod n

® Eg,
® E({3,33},4)=43mod 33 =64mod33=31

® D({7,33},31) =31 mod 33 =27,512,614,111 mod 33
=4

® Q: Why encrypt with private key?

® Non Repudiation!

Digital Signatures

® A digital signature serves the same purpose as a real
signature.

® It is a mark that only sender can make

® Other people can easily recognize it as belonging to the
sender

® Digital signatures must be:

® Unforgeable: If Alice sighs message M with signature S, it is
impossible for someone else to produce the pair (M, S).

® Authentic: If Bob receives the pair (M, S) and knows Alice’s
public key, he can check (“verify”) that the signature is really

from Alice

® Example: Code signing

How can Alice sign a digital
document?

® Digital document: M
® Since RSA is slow, hash M to compute digest: m = h(M)
® Signature: Sig(M)=E,.(m)=m%modn
® Since only Alice knows k-, only she can create the signature
® To verify: Verify(M,Sig(M))
® Bob computes h(M) and compares it with D, (Sig(M))
® Bob can compute D,,(Sig(M)) since he knows k* (Alice’s public key)

® If and only if they match, the signature is verified (otherwise,
verification fails)

Putting it all together
Define m = “Network security is fun!”
Src = Alice, Dest = Bob
. [Msg = Ee+(k), Ex(m, Ea-(h(m))) J

R

(A*, A’) is Alice’s long-term public-private key pair.
(B*,B7) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

42

Birthday Attack
and Signatures

® Since signatures depend on
hash functions, they also
depend on the hash function’s
collision resistance

® Don’t use MDS5, and start
moving away from SHA1

Dear Anthony,

[This letter is) X [you to] [Mr. P.
| T am writing | to introduce \iq youf |-- BAlfred |__

new chief X our
Barton, the newly appointed| |senior jewellery buyer for jiye
European] [area (will take) the
Northern | gpyrope | |division Hehas taken| ©OVer |._-
all

watches and jewellery}

responsibility for {the whole of} our interests in {jewellery and watches

i [area | afford X every may need
in the |region| - Please give him all the help he needs

seek out modern | . [top
to find the most up to datej lines for the 1high end of the

empowered
authorized

samples

specimens} of the

market. He is { } to receive on our behalf {

[latest] [watch and jewellery up | limit
|newest| |jewellery and watch products, subject/ *° 2 \maximum

carr

of ten thousand dollars. He will {holg} a signed copy of this {

letter
document

. . . . X . X appended
as proof of identity. An order with his signature, which is j,ttached

above

} you to charge the cost to this company at the {head officej

authorizes
allows

fully) level i) .
address. We - expect that our jy51ume of orders will increase in
following trust X X be
the next year and hope that the new appointment will prove

advantageous
an advantage to both our companies.

Figure 11.7 A Letter in 2%7 Variations
(from Stallings, Crypto and Net Security)

Properties of a
Digital Signature

No forgery possible: No one can forge a message
that is purportedly from Alice

Authenticity check: If you get a signed message you
should be able to verify that it’s really from Alice

No alteration/Integrity: No party can undetectably
alter a signed message

Provides authentication, integrity, and non-

repudiation (cannot deny having signed a signed
message)

Non-Repudiation

rc = Alice, Dest = Bob
sg = {"network security is fun", MAC
ACk("network security is fun!)} :

Which of these

: - offer non-
rc = Alice, Dest = Bob) i
sg = {"neftwork security is fun", repu diation?

; A A-(h("network security is fun!"))}

|

S5 > < v

	Default Section
	Slide 1: CIS 6930: IoT Security

	Intro
	Slide 2: Class Notes and Clarifications

	Block ciphers
	Slide 3: What encryption does and does not
	Slide 4: Principals
	Slide 5
	Slide 6: Message Authentication Codes (MACs)
	Slide 7: Message Authenticity
	Slide 8: Encryption and Message Authenticity
	Slide 9: Cryptographic Hash Functions
	Slide 10: Hash functions are usually fairly inexpensive (i.e., compared with public key cryptography)
	Slide 11: Why might hashes be useful?
	Slide 12: Prof. Pedantic proposes the following hash function, arguing that it offers both compression and ease of computation. Why is this a lousy crypto hash function?
	Slide 13: Cryptographic Hash Functions
	Slide 14: Birthday Attack
	Slide 15: Practical Implications
	Slide 16: Some common cryptographic hash functions
	Slide 17: General Structure of Hash
	Slide 18: Message Extension Attack
	Slide 19: A Better MAC
	Slide 20: HMAC
	Slide 21: Basic truths of cryptography
	Slide 22: Building systems/apps with cryptography
	Slide 23: Encryption and Message Authenticity
	Slide 24: Private-key crypto is like a door lock
	Slide 25: Public Key Crypto (10,000 ft view)
	Slide 26: Public Key Cryptography
	Slide 27: RSA (Rivest, Shamir, Adelman)
	Slide 28: Modular Arithmetic
	Slide 29: Euler’s Totient Function
	Slide 30: Euler’s Totient Function
	Slide 31: RSA Key Generation
	Slide 32: RSA Encryption/Decryption
	Slide 33: Is RSA Secure?
	Slide 34: Security (Cont’d)
	Slide 35: RSA
	Slide 36: Hybrid Cryptosystems
	Slide 37: Hybrid Cryptosystems
	Slide 38: Public Key Cryptography
	Slide 39: Encryption using private key
	Slide 40: Digital Signatures
	Slide 41: How can Alice sign a digital document?
	Slide 42: Putting it all together
	Slide 43: Birthday Attack and Signatures
	Slide 44: Properties of a Digital Signature
	Slide 45: Non-Repudiation

