
CIS 6930:
IoT Security

Lecture 4

Prof. Kaushal Kafle

1

Spring 2025

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes and Clarifications
• Using Latex

• Learn it!

• Useful forever!

• Research proposal due today!

• Any questions?

2

What encryption
does and does not

• Does:

• confidentiality

• Doesn’t do:

• data integrity

• source authentication

• Need: ensure that data is not altered and is from
an authenticated source

3

Principals

Alice Bob

Eve

4

Src=Alice, Dest=Bob

Msg = “security is fun!”

Alice Bob

5

Eve

Src=Alice, Dest=Bob

Msg = “security is fun!”

Src=Alice, Dest=Bob

Msg = “security is not fun!”

Man-in-the-Middle (MitM) attack

• For confidentiality, just encrypt.

• How do we ensure integrity?

Message Authentication Codes
(MACs)

6

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence
of bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not be
able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message,
Alice sends

• EK(M,MACK(M)) where EK(X) is the encryption of X using key K

• Proves that M was encrypted (confidentiality and integrity) by
someone who knew K (authenticity)

Why are we sending M?

Message Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = {“security is fun”,
MACk(“security is fun!”)}

7

Src = Alice, Dest = Bob
Msg = {“security isn’t fun!”, ???}

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

Encryption and Message
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“security is fun”,
MACk2(“security is fun!”)}}

8

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

Cryptographic Hash Functions

• Hash function h: deterministic one-way function that
takes as input an arbitrary message M (sometimes
called a preimage) and returns as output h(M), a small
fixed length hash (sometimes called a digest)

• Hash functions should have the following two
properties:

• compression: reduces arbitrary length string to fixed
length hash

• ease of computation: given message M, h(M) is easy
to compute

9

Hash functions are usually fairly inexpensive
(i.e., compared with public key cryptography)

10

Why might hashes be useful?

• Message authentication codes (MACs):

• e.g.: MACK(M) = h(K|M)

(but don't do this, use HMAC instead)

• Modification detection codes:

• detect modification of data

• any change in data will cause change in hash

11

Prof. Pedantic proposes the following
hash function, arguing that it offers both
compression and ease of computation.

Why is this a lousy crypto hash function?

• h(M) = 0 if the number of 0s in M is divisible
by 3

• h(M) = 1 otherwise

12

Cryptographic Hash Functions

• Properties of good cryptographic hash functions:

• preimage resistance: given digest y, computationally
infeasible to find preimage x' such that h(x')=y
(also called “one-way property”)

• 2nd-preimage resistance: given preimage x, computationally
infeasible to find preimage x' such that h(x)=h(x')
(also called “weak collision resistance”)

• collision resistance: computationally infeasible to find
preimages i,j such that h(i)=h(j)
(also called “strong collision resistance”)

13

Birthday Attack
• Birthday Paradox: chances that 2+ people share

birthday in group of 23 is > 50%.

• General formulation

• function f() whose output is uniformly distributed over H

possible outputs

• Number of experiments Q(H) until we find a collision is

approximately:

• E.g.,

• Why is this relevant to hash sizes?

14
See: https://betterexplained.com/articles/understanding-the-birthday-paradox/

https://betterexplained.com/articles/understanding-the-birthday-paradox/

Practical
Implications

• Choosing two messages that
have the same hash h(x) = h(x’)
is more practical than you might
think.

• Example attack: secretary is
asked to write a “bad” letter, but
wants to replace with a “good”
letter.

• Boss signs the letter after
reading

15
(from Stallings, Crypto and Net Security)

• Find collision between
2^37 ‘good’ vs 2^37
‘bad’ letters

Some common cryptographic
hash functions

• MD5 (128-bit digest) [don’t use this]

• SHA-1 (160-bit digest) [stop using this*]

• SHA-256 (256-bit digest)

• SHA-512 (512-bit digest)

• SHA-3 [recent competition winner]

16

General Structure of Hash

17

f f
n n

n

IV =

CV0 CV1

b

n

CVL–1

CVLn

b

Y0 Y1 YL–1

IV = Initial value

CVi = chaining variable

Yi = ith input block

f = compression algorithm

L = number of input blocks

n = length of hash code

b = length of input block

Figure 11.8 General Structure of Secure Hash Code

b

f

(from Stallings, Crypto and Net Security)

Message Extension Attack

• Why is MACk(M) = H(k|M) bad?

• How can Eve append M’ to M?

• Goal: compute H(k|M|M’) without knowing k

• Solution: Use H(k|M) as IV for next f iteration in H()

18

A Better MAC

• Objectives

• Use available hash functions without modification

• Easily replace embedded hash function as more secure
ones are found

• Preserve original performance of hash function

• Easy to use

19

HMAC

• Attacker cannot extend MAC as
before
• Try it out!

20

(from Stallings, Crypto and Net Security)

= 0x363636…

= 0x5C5C5C…

precomputed

H(k⊕ipad || M)H(k⊕opad ||)

hash1

HMAC(k, M)

hash2

Basic truths of cryptography

• Cryptography is not frequently
the source of security
problems

• Algorithms are well known and
widely studied

• Vetted through crypto
community

• Avoid any “proprietary”
encryption

• Claims of “new technology” or
“perfect security” are almost
assuredly snake oil

21

Building systems/apps with
cryptography

• Use quality libraries

• SSLeay, cryptolib, openssl

• Find out what cryptographers think of a
package before using it

• Code review like crazy

• Educate yourself on how to use library

• Understand caveats by original designer and
programmer

22

Encryption and Message
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“network security is fun”,
MACk2(“network security is fun!”)}}

23

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the hard
part?

Private-key crypto is like a door lock

24

Why?

Public Key Crypto
(10,000 ft view)

25

• Separate keys for encryption and decryption

• Public key: anyone can know this

• Private key: kept confidential

• Anyone can encrypt a message to you using your
public key

• The private key (kept confidential) is required to
decrypt the communication

• Alice and Bob no longer have to have a priori shared a
secret key

Public Key Cryptography

• Each key pair consists of a public and
private component: k+ (public key), k-

(private key)

• Public keys are distributed (typically)
through public key certificates

• Anyone can communicate secretly with
you if they have your certificate

26

RSA
(Rivest, Shamir, Adelman)

• The dominant public key
algorithm

• The algorithm itself is
conceptually simple

•Why it is secure is very
deep (number theory)

•Uses properties of
exponentiation modulo a
product of large primes

"A method for obtaining Digital
Signatures and Public Key
Cryptosystems“, Communications of

the ACM, Feb. 1978.

27

Modular Arithmetic
• Integers Zn = {0, 1, 2, ..., n-1}

• x mod n = remainder of x divided by n

• 5 mod 13 = 5

• 13 mod 5 = 3

• y is modular inverse of x iff xy mod n = 1

• E.g. Z11 -> 4 is inverse of 3, 5 is inverse of 9, 7 is inverse of 8

• If n is prime, then Zn has modular inverses for all integers
except 0

28

Euler’s Totient Function

• coprime: having no common positive factors other than 1 (also
called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function: Φ(n) = number of integers less than
or equal to n that are coprime with n

where product ranges over distinct primes dividing n

• If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

• If m is prime, then Φ(m) = m - 1
29

Euler’s Totient Function

30

If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

If m is prime, then Φ(m) = m - 1

For primes and co-primes:

RSA Key Generation

31

1. Choose distinct primes p and q

2. Compute n = pq

3. Compute Φ(n) = Φ(pq) =
Φ(p)Φ(q)= (p-1)(q-1)

4. Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

5. Compute d=e-1 mod(Φ(pq)).
d is the private key exponent

Example:

let p=3, q=11

n=33

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3

RSA Encryption/Decryption

• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext: 4

• E({7,33},4) = 47 mod 33 = 16384 mod 33 = 16

• D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4

32

33

Is RSA Secure?

• {e,n} is public information

• If you could factor n into p*q, then

• could compute (n) =(p-1)(q-1)

• could compute d = e-1 mod (n)

•would know the private key <d,n>!

• But: factoring large integers is hard!

• classical problem worked on for centuries; no
known reliable, fast method

34

Security (Cont’d)
• At present, key sizes of 1024 bits are considered

to be secure, but 2048 bits is better

• Tips for making n difficult to factor

1.p and q lengths should be similar (ex.: ~500
bits each if key is 1024 bits)

2.both (p-1) and (q-1) should contain a “large”
prime factor

3.gcd(p-1, q-1) should be “small”

4.d should be larger than n1/4

RSA
• Most public key systems use at least 1,024-bit keys

• Key size not comparable to symmetric key algorithms

• RSA is much slower than most symmetric crypto algorithms

• AES: ~161 MB/s

• RSA: ~82 KB/s

• This is too slow to use for modern network communication!

• Solution: Use hybrid model

35

Hybrid Cryptosystems
• In practice, public-key cryptography is used to secure and

distribute session keys.

• These keys are used with symmetric algorithms for
communication.

• Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

• Receiver decrypts the message to recover the session key.

• Both encrypt/decrypt their communications using the
same key.

• Key is destroyed in the end.

36

Hybrid Cryptosystems

37

Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek(“Network security is fun!”)

(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Public Key Cryptography

• Each key pair consists of a public and
private component: k+ (public key), k-

(private key)

38

What happens if we flip the order?

Encryption using private key

• Encryption and Decryption

Ek-(M) : ciphertext = plaintextd mod n

Dk+(ciphertext) : plaintext = ciphertexte mod n

• E.g.,

• E({3,33},4) = 43 mod 33 = 64 mod 33 = 31

• D({7,33},31) = 317 mod 33 = 27,512,614,111 mod 33
= 4

• Q: Why encrypt with private key?

• Non Repudiation!

39

Digital Signatures
• A digital signature serves the same purpose as a real

signature.

• It is a mark that only sender can make

• Other people can easily recognize it as belonging to the
sender

• Digital signatures must be:

• Unforgeable: If Alice signs message M with signature S, it is
impossible for someone else to produce the pair (M, S).

• Authentic: If Bob receives the pair (M, S) and knows Alice’s
public key, he can check (“verify”) that the signature is really
from Alice

• Example: Code signing
40

How can Alice sign a digital
document?

• Digital document: M

• Since RSA is slow, hash M to compute digest: m = h(M)

• Signature: Sig(M) = Ek-(m) = md mod n

• Since only Alice knows k-, only she can create the signature

• To verify: Verify(M,Sig(M))

• Bob computes h(M) and compares it with Dk+(Sig(M))

• Bob can compute Dk+(Sig(M)) since he knows k+ (Alice’s public key)

• If and only if they match, the signature is verified (otherwise,
verification fails)

41

Putting it all together

42

Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek(m, EA-(h(m)))

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Define m = “Network security is fun!”

Birthday Attack
and Signatures
• Since signatures depend on

hash functions, they also
depend on the hash function’s
collision resistance

• Don’t use MD5, and start
moving away from SHA1

43(from Stallings, Crypto and Net Security)

Properties of a
Digital Signature

• No forgery possible: No one can forge a message
that is purportedly from Alice

• Authenticity check: If you get a signed message you
should be able to verify that it’s really from Alice

• No alteration/Integrity: No party can undetectably
alter a signed message

• Provides authentication, integrity, and non-
repudiation (cannot deny having signed a signed
message)

44

Non-Repudiation

45

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
MACk(“network security is fun!”)}

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
EA-(h(“network security is fun!”))}

Which of these
offer non-
repudiation?

MAC

	Default Section
	Slide 1: CIS 6930: IoT Security

	Intro
	Slide 2: Class Notes and Clarifications

	Block ciphers
	Slide 3: What encryption does and does not
	Slide 4: Principals
	Slide 5
	Slide 6: Message Authentication Codes (MACs)
	Slide 7: Message Authenticity
	Slide 8: Encryption and Message Authenticity
	Slide 9: Cryptographic Hash Functions
	Slide 10: Hash functions are usually fairly inexpensive (i.e., compared with public key cryptography)
	Slide 11: Why might hashes be useful?
	Slide 12: Prof. Pedantic proposes the following hash function, arguing that it offers both compression and ease of computation. Why is this a lousy crypto hash function?
	Slide 13: Cryptographic Hash Functions
	Slide 14: Birthday Attack
	Slide 15: Practical Implications
	Slide 16: Some common cryptographic hash functions
	Slide 17: General Structure of Hash
	Slide 18: Message Extension Attack
	Slide 19: A Better MAC
	Slide 20: HMAC
	Slide 21: Basic truths of cryptography
	Slide 22: Building systems/apps with cryptography
	Slide 23: Encryption and Message Authenticity
	Slide 24: Private-key crypto is like a door lock
	Slide 25: Public Key Crypto (10,000 ft view)
	Slide 26: Public Key Cryptography
	Slide 27: RSA (Rivest, Shamir, Adelman)
	Slide 28: Modular Arithmetic
	Slide 29: Euler’s Totient Function
	Slide 30: Euler’s Totient Function
	Slide 31: RSA Key Generation
	Slide 32: RSA Encryption/Decryption
	Slide 33: Is RSA Secure?
	Slide 34: Security (Cont’d)
	Slide 35: RSA
	Slide 36: Hybrid Cryptosystems
	Slide 37: Hybrid Cryptosystems
	Slide 38: Public Key Cryptography
	Slide 39: Encryption using private key
	Slide 40: Digital Signatures
	Slide 41: How can Alice sign a digital document?
	Slide 42: Putting it all together
	Slide 43: Birthday Attack and Signatures
	Slide 44: Properties of a Digital Signature
	Slide 45: Non-Repudiation

