
CIS 4930: Secure IoT

Prof. Kaushal Kafle

Lecture 22

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes

1. The first project grades are live.

• If you have any questions, you can let me know via canvas message or
during office hours.

2. Last week to submit your bug bounties!

3. Format of the final exam is the same as the midterm exam.

4. I will talk about the final project report and the exam details in the next class.

5. Student Assessment of Instruction

Respond to the course assessment survey.

•Few notifications

Web Authentication
(still based on“something you know”)

3

Credentials can be
1. Something I am
2. Something I have
3. Something I know

Web Authentication
• Authentication is a bi-directional process

• Client

• Server

• Mutual authentication

• Several standard authentication tools

• Basic (client)

• Digest (client)

• Secure Socket Layer (server, mutual)

4

GET /protected/index.html HTTP/1.0

GET /protected/index.html HTTP/1.0

Authorization: Basic JA87JKAs3NbBDs

HTTP/1.0 401 Unauthorized

WWW-Authenticate: Basic realm=“Private”

CLIENT

CLIENT

CLIENT

Basic Authentication
5

Basic Authentication --
is this secure?

• Encoded ! = Encrypted

• Passwords easy to intercept (base-64
encoded; not encrypted)

• Passwords:

• easy to guess

• easy to share

• No server authentication - easy to fool client
into sending password to malicious server

6

GET /protected/index.html HTTP/1.1

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Digest

realm=“Private” nonce=“98bdc1f9f017..”

GET /protected/index.html HTTP/1.1

Authorization: Digest

username=“lstein” realm=“Private”

nonce=“98bdc1f9f017..” response=“5ccc069c4..”

CLIENT

CLIENT

CLIENT

7

Digest Authentication

Challenge/Response

• Challenge nonce is a one time random
string/value

• more generally, a nonce is number or string
(often randomly or pseudorandomly chosen)
that is only used once

• Cannot be forged by anyone else

• Response: challenge hashed with username and
password

8

• Cleartext password never transmitted across network

• Cleartext password never stored on server

• Replay attacks difficult

• Intercepted response only valid for a single URL

• Shared disadvantages

• Vulnerable to man-in-the-middle attacks (no server-
side auth)

• Document itself can be sniffed

9

Advantages of
Digest over Basic

10

Authentication Handshakes

• Secure communication almost always includes an initial
authentication handshake.

• Authenticate each other

• Establish session keys

• This process is not trivial; flaws in this process undermine
secure communication

Authentication
11

Alice? Bob
Trudy

KAlice-Bob KAlice-Bob

12

Authentication with Shared Secret

• Weaknesses
• Authentication is not mutual; Trudy can convince Alice that

she is Bob
• Trudy can hijack the conversation after the initial exchange
• If the shared key is derived from a password, Trudy can

mount an off-line password guessing attack (R is known)
• Trudy may compromise Bob’s database and later

impersonate Alice

Alice Bob

I’m Alice

Here’s a challenge R

f(KAlice-Bob, R)

13

Authentication with Shared Secret

(Cont’d)

• A variation
• Requires reversible cryptography

• Other variations are possible

• Weaknesses
• All the previous weaknesses remain

• Trudy doesn’t have to see R to mount off-line password guessing if R
has certain patterns (e.g., concatenated with a timestamp)
• Trudy sends a message to Bob, pretending to be Alice

Alice Bob

I’m Alice

R

KAlice-Bob{R}

14

Authentication with Public Key

• Bob’s database is less risky

• Weaknesses
• Authentication is not mutual; Trudy can convince Alice that

she is Bob

• Trudy can hijack the conversation after the initial exchange

• Trudy can trick Alice into signing something

•Mitigation: Use different private key for authentication

Alice Bob

I’m Alice

R

SigAlice{R}

15

Authentication with Public Key (Cont’d)

A variation

Alice Bob

I’m Alice

{R}Alice

R

What happens if Trudy could get Alice to decrypt things arbitrarily?

16

Mutual Authentication

Alice Bob

I’m Alice

R1

f(KAlice-Bob, R1)

R2

f(KAlice-Bob, R2)

Alice Bob

I’m Alice, R2

R1, f(KAlice-Bob, R2)

f(KAlice-Bob, R1)

Optimize

17

Trudy Bob

I’m Alice, R2

R1, f(KAlice-Bob, R2)

Mutual Authentication (Cont’d)

• Reflection attack

f(KAlice-Bob, R1)

Trudy Bob

I’m Alice, R1

R3, f(KAlice-Bob, R1)

18

Reflection Attacks (Cont’d)

• Lesson: Don’t have Alice and Bob do exactly the same thing

• Different keys

• Totally different keys

•KAlice-Bob = KBob-Alice + 1

• Different Challenges

• The initiator should be the first to prove its identity

•Assumption: initiator is more likely to be the bad guy

19

Mutual Authentication (Cont’d)

• Password guessing

Alice Bob

I’m Alice, R2

R1, f(KAlice-Bob, R2)

f(KAlice-Bob, R1)

Alice Bob

I’m Alice

R1

f(KAlice-Bob, R1), R2

f(KAlice-Bob, R2)

Countermeasure

20

Mutual Authentication (Cont’d)

• Public keys

• Authentication of public keys is a critical issue

Alice Bob

I’m Alice, {R2}Bob

R2, {R1}Alice

R1

21

Mutual Authentication (Cont’d)

• Mutual authentication with timestamps

• Require synchronized clocks

• Alice and Bob have to encrypt different timestamps

Alice Bob

I’m Alice, f(KAlice-Bob, timestamp)

f(KAlice-Bob, timestamp+1)

22

Integrity/Encryption for Data

• Communication after mutual authentication should
be cryptographically protected as well

• Require a session key established during mutual
authentication

23

Establishment of Session Keys

• Secret key based authentication

• Assume the following authentication happened.

• Can we use KAlice-Bob{R} as the session key?

• Can we use KAlice-Bob{R+1} as the session key?

• In general, modify KAlice-Bob and encrypt R. Use the result as
the session key.

Alice Bob

I’m Alice

R

KAlice-Bob{R}

24

Establishment of Session Keys

(Cont’d)
• Two-way public key based authentication

1. Alice chooses a random number R, encrypts it with
Bob’s public key, result used as session key.

•Trudy may hijack the conversation

2. Alice encrypts and signs R

•Trudy may save all the traffic, and decrypt all the
encrypted traffic when she is able to compromise
Bob

•Less severe threat

25

Two-Way Public Key Based

Authentication (Cont’d)

• A better approach
• Alice chooses and encrypts R1 with Bob’s public key

• Bob chooses and encrypts R2 with Alice’s public key

• Session key is R1R2

• Trudy will have to compromise both Alice and Bob

• An even better approach
• Alice and Bob establish the session key with Diffie-Hellman

key exchange

• Alice and Bob sign the quantity they send

• Trudy can’t learn anything about the session key even if
she compromises both Alice and Bob

26

Diffie-Hellman Key Exchange

• Used to
establish
session keys

• Preferred
over RSA as
it provides
forward
secrecy.

D-H public key

D-H private
key

27

Establishment of Session Keys

(Cont’d)

• One-way public key based authentication

• It’s only necessary to authenticate the server

•Example: SSL

• Encrypt R with Bob’s public key

• Diffie-Hellman key exchange

•Bob signs the D-H public key

28

Mediated Authentication (With KDC)

• Some concerns
• Trudy may claim to be Alice and talk to KDC
• Trudy cannot get anything useful

• Messages encrypted by Alice may get to Bob before KDC’s
message

• It may be difficult for KDC to connect to Bob

Alice BobKDC

Generate KAB

Alice wants Bob KBob{KAB}

KAlice{KAB}

Key Distribution Center (KDC) operation (in principle)

29

Mediated Authentication (With KDC)

• Must be followed by a mutual authentication
exchange
• To confirm that Alice and Bob have the same key

KDC operation (in practice)

Alice BobKDC

Generate KABAlice wants Bob

KBob{KAB}

KAlice{KAB}, KBob{KAB}

ticket

30

Needham-Schroeder Protocol

• Classic protocol for authentication with KDC
• Many others have been modeled after it (e.g., Kerberos)

• Nonce: A number that is used only once
• Deal with replay attacks

Alice BobKDC

Generate KAB
N1, Alice wants Bob

ticket to Bob, KAB{N2}

KAlice{N1, “Bob”, KAB, ticket to Bob},

where ticket to Bob = KBob{KAB, Alice}

KAB{N2−1, N3}

KAB{N3−1}

31

Needham-Schroeder Protocol (Cont’d)

• A vulnerability

•When Trudy gets a previous key used by Alice,
Trudy may reuse a previous ticket issued to Bob
for Alice

• Essential reason

•The ticket to Bob stays valid even if Alice
changes her key

32

Expanded Needham-Schroeder Protocol

• The additional two messages assure Bob that the initiator has
talked to KDC since Bob generates NB

Alice BobKDC

Generate KAB; extract NB
N1, Alice wants Bob, KBob{NB}

ticket to Bob, KAB{N2}

KAlice{N1, “Bob”, KAB, ticket to Bob},

where ticket to Bob = KBob{KAB, Alice, NB}

KAB{N2−1, N3}

KAB{N3−1}

I want to talk to you

KBob{NB}

Kerberos

34

Kerberos
• An online system that resists password eavesdropping and

achieves mutual authentication

• First single sign-on system (SSO)

• Easy application integration API

• Most widely used (non-web) centralized password system in
existence

• Now part of Windows network authentication

35

User Servers

User proves his identity;
requests ticket for some service

User receives ticket

Ticket is used to access
desired network service

Knows all users’ and
servers’ passwords

Kerberos Overview

E.g. SSOs

What Should a Ticket Look Like?

User Server

• Ticket cannot include server’s plaintext password

• Otherwise, next time user will access server directly
without proving his identity to authentication service

• Solution: encrypt some information with a key known to the
server (but not the user!)

• Server can decrypt ticket and verify information

• User does not learn server’s key

Ticket gives holder
access to a network
service

37

What should a ticket include?

Server

Encrypted
ticket

Knows passwords of
all users and servers

Encrypted
ticket

User

• User name

• Server name

• Address of user’s workstation -- WHY?

• Ticket lifetime -- WHY?

• A few other things (e.g., session key)
38

No ticket reuse
by other user.

So that ticket
expires,
prevents reuse

Two-Step Authentication

Encrypted TGS ticket

Joe the User

Key distribution
center (KDC)

USER=Joe; service=TGS

•Prove identity once to obtain special TGS ticket
•Use TGS to get tickets for any network service

File server, printer,
other network services

Encrypted
service ticket

Ticket granting
service (TGS)

TGS ticket

Encrypted
service ticket

39

Not quite good enuf...
• Ticket hijacking

• Malicious user may steal the service ticket of another user on
the same workstation and use it

• IP address verification does not help

• Servers must verify that the user who is presenting the ticket is
the same user to whom the ticket was issued

• No server authentication

• Attacker may misconfigure the network so that he receives
messages addressed to a legitimate server

• Capture private information from users and/or deny service

• Servers must prove their identity to users

• We want mutual authentication!

40

Symmetric Keys in Kerberos
• Kc is long-term key of client C

• Derived from user’s password

• Known to client and key distribution center (KDC)

• KTGS is long-term key of TGS

• Known to KDC and ticket granting service (TGS)

• Kv is long-term key of network service V

• Known to V and TGS; separate key for each service

• Kc,TGS is short-term session key between C and TGS

• Created by KDC, known to C and TGS

• Kc,v is short-term session key between C and V

• Created by TGS, known to C and V

41

Password-based key derivation
function 2 (PBKDF 2)

Brace yourself!
It’s Kerberos time!

• Three-step process:

• “Logon” -- obtain TGS ticket from KDC

•Obtain “service ticket” from TGS

•Use service

42

“Single Logon” Authentication

User

• Client only needs to obtain TGS ticket once (say, every
morning)

• Ticket is encrypted; client cannot forge it or tamper with it

kinit program (client)
Key Distribution
Center (KDC)

password
IDc , IDTGS , timec

EncryptKc(Kc,TGS , IDTGS , timeKDC ,
lifetime , ticketTGS)

Kc

Convert into
client master key

Key = Kc

Key = KTGSTGS

…

All users must
pre-register their
passwords with KDC

Fresh key to be used
between client and TGS

Decrypts with
Kc and obtains
Kc,TGS and
ticketTGS

EncryptKTGS(Kc,TGS , IDc , Addrc ,
IDTGS , timeKDC , lifetime)

Client will use this unforgeable ticket to
get other tickets without re-authenticating

43

Obtaining a Service Ticket

User

• Client uses TGS ticket to obtain a service ticket and a short-term key
for each network service

• One encrypted, unforgeable ticket per service (printer, email,
etc.)

Client Ticket Granting
Service (TGS)
usually lives inside KDC

System command,
e.g. “lpr –Pprint”

IDv , ticketTGS, authC

EncryptKc,TGS(Kc,v , IDv , timeTGS ,
lifetime, ticketv)

Fresh key to be used
between client and service

Knows Kc,TGS
and ticketTGS

EncryptKc,TGS(IDc , Addrc , timec)

Proves that client knows key Kc,TGS

contained in encrypted TGS ticket

EncryptKv(Kc,v , IDc , Addrc , IDv ,
timeTGS , lifetime)

Client will use this unforgeable
ticket to get access to service V

Knows key Kv for
each service

44

Obtaining Service

User

• For each service request, client uses the short-term
key for that service and the ticket he received from
TGS

Client

Server V

System command,
e.g. “lpr –Pprint”

ticketv , authC

EncryptKc,v(timec+1)

Knows Kc,v
and ticketv

EncryptKc,v(IDc , Addrc , timec)

Proves that client knows key Kc,v

contained in encrypted ticket

Authenticates server to client
Reasoning:

Server can produce this message only if he knows key Kc,v.

Server can learn key Kc,v only if he can decrypt service ticket.

Server can decrypt service ticket only if he knows correct key Kv.

If server knows correct key Kv, then he is the right server.

45

Cross-Realm Kerberos
• Extend philosophy to more servers

• Meant for users/services in one Kerberos realm to access
resources in another Kerberos realm

• Obtain ticket from TGS for “foreign” Realm

• Supply to TGS of foreign Realm

• Rinse and repeat as necessary

• “There is no problem so hard in computer science that it
cannot be solved by another layer of indirection.”

•David Wheeler, Cambridge University (circa 1950)

46

	Default Section
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Class Notes

	User Authentication
	Slide 3: Web Authentication (still based on“something you know”)
	Slide 4: Web Authentication
	Slide 5: Basic Authentication
	Slide 6: Basic Authentication -- is this secure?
	Slide 7: Digest Authentication
	Slide 8: Challenge/Response
	Slide 9: Advantages of Digest over Basic
	Slide 10: Authentication Handshakes
	Slide 11: Authentication
	Slide 12: Authentication with Shared Secret
	Slide 13: Authentication with Shared Secret (Cont’d)
	Slide 14: Authentication with Public Key
	Slide 15: Authentication with Public Key (Cont’d)
	Slide 16: Mutual Authentication
	Slide 17: Mutual Authentication (Cont’d)
	Slide 18: Reflection Attacks (Cont’d)
	Slide 19: Mutual Authentication (Cont’d)
	Slide 20: Mutual Authentication (Cont’d)
	Slide 21: Mutual Authentication (Cont’d)
	Slide 22: Integrity/Encryption for Data
	Slide 23: Establishment of Session Keys
	Slide 24: Establishment of Session Keys (Cont’d)
	Slide 25: Two-Way Public Key Based Authentication (Cont’d)
	Slide 26: Diffie-Hellman Key Exchange
	Slide 27: Establishment of Session Keys (Cont’d)
	Slide 28: Mediated Authentication (With KDC)
	Slide 29: Mediated Authentication (With KDC)
	Slide 30: Needham-Schroeder Protocol
	Slide 31: Needham-Schroeder Protocol (Cont’d)
	Slide 32: Expanded Needham-Schroeder Protocol
	Slide 34: Kerberos
	Slide 35: Kerberos
	Slide 36: Kerberos Overview
	Slide 37: What Should a Ticket Look Like?
	Slide 38: What should a ticket include?
	Slide 39: Two-Step Authentication
	Slide 40: Not quite good enuf...
	Slide 41: Symmetric Keys in Kerberos
	Slide 42: Brace yourself! It’s Kerberos time!
	Slide 43: “Single Logon” Authentication
	Slide 44: Obtaining a Service Ticket
	Slide 45: Obtaining Service
	Slide 46: Cross-Realm Kerberos

