CIS 4930: Secure loT

Prof. Kaushal Kafle

L ecture 10

Platforms

S 59 SmartThings

(p I’e-201 9) 2016 IEEE Symposium on Security and Privacy

Security Analysis of Emerging Smart Home Applications

Earlence Fernandes Jaeyeon Jung Atul Prakash
University of Michigan Microsoft Research University of Michigan

Google Nest

™

A Study of Data Store-based Home Automation

Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, Denys Poshyvanyk

William & Mary, Williamsburg, VA, USA
{kkafle,kpmoran,smanandhar,nadkarni,denys}@cs.wm.edu

I 1A

Background: SmartThings

Capabilities

Commands

e.g. on(), off()

O |Attributes

e.g. switch, battery

EXAMPLES OF CAPABILITIES IN THE SMARTTHINGS FRAMEWORK

Capability Commands Attributes

capability.lock lock (), unlock () lock (lock status)

capability.battery N/A battery (battery status)

capability.switch on(), off () switch (switch status)

capability.alarm off (), strobel(), alarm (alarm status)
siren(), both()

capability.refresh refresh() N/A

Background: SmartThings

Mini-apps written to facilitate trigger-action programming

e Written using the SmartThings Developer SDK

e | anguage Groovy, compiles to Java byte code

e Execute in the SmartThings cloud backend (closed-source)

Software-wrappers for physical devices

Background: SmartThings

Mini-apps written to facilitate trigger-action programming

//query the user for capabilities

1. Device Handlers declare a device’s preferences {

‘ps section ("Select Devices") {
Capablhty input "lockl", "capability.lock", title:
2. SmartApps request devices with Lnput "l Teesability. switch?, title:
specific capabilities. } "select a switch?
3. Users bind SmartApps to devices }
through Device Handlers. Capabilities requested in a SmartApp.

Software-wrappers for physical devices

[Zwave LOCk] Selart Daviaas Z-Wave Schlage Lock

Select a lock

capability.battery
capability.lock
capability.refresh

\ J

Select a switch

Assign a name

Set for specific mode(s)

Physical ZWave
Lock

Capabilities declared in a typical door lock < o o

Background: SmartThings

e SmartThings uses both the hub and the cloud (pre-2019)

Reference Monitor
Groovy

yoaca f v Capabilities

Commands
< > < -
Events

SmartThings Cloud

e Eg Sec Policy: Permission assignment to apps

e Reference monitor: The mechanism that
ensures that the security policy is enforced
correctly

e Reference Monitor Properties

- Complete Mediation

- Tamperproofness

- Verifiability

= Motivation

Key question: /s the platform’s APl secure?

Integrity Availability Privacy

Can attackers
manipulate devices?

Can attackers disable devices? Can attackers learn

private information?

(¢.g., turn OFF a camera) (e.g., the user’s schedule)

(e.g., insert lock codes)

Authenticity Confidentiality

Can attackers spoof messages? Can attackers learn

(e.g., event spoofing, using sensitive information
stolen OAuth tokens) (e.g., lock codes)

Methodology

Dynamic Testing

Static Analysis

Source code (Groovy SmartApps)

Binaries (certain Android apps)

* Network Analysis (mainly to build the dataset)

Research Questions:

How overprivileged are apps?
Can events be spoofed?
What sensitive information can apps access?

How do external third-party integrations affect security?

Findings

Overprivilege
Event injection (i.e., spoofing)
Event Sniffing

Vulnerable Third-party integrations

Findings: Overprivilege

* Coarse-grained Capabilities
* App asks for capability “lock™

e Can read the lock’s state, and issue the “lock” and
“unlock” commands.

* What if the app only needs to read the lock state?

 Device-granularity binding

* Apps get all capabillities for a device, if they ask for just
one.

Which of these is a policy problem, vs a mechanism problem?

Which of these would be harder to fix?

Findings: Event Injection

e Dynamic code loading

e SmartApps use dynamic method invocation

 Can be exploited to execute any code in the
SmartApp’s security context (i.e., the capabilities

available to the SmartApp)

7 def updateDevice () {
def data = request.JSON

8
9
10
11
12

13
14

15
16

17
18
19
20
21
22
23
24
25

26

def

def arguments = data.arguments

command = data.command

log.debug "updateDevice, params: ${params},

request: ${datal}"

"command

if (!command) {
render status: 400, data: ’'{"msg":
is required"}’
} else {
def device = allDevices.find { it.id ==
params.id }
if (device) {
if (arguments) {
device."$command" (xarguments)
} else {
device."$command" ()
}
render status: 204, data: "{}"
} else {
render status: 404, data: ’'{"msg":

}

not found"}’

"Device

Findings: Event Injection

* Dynamic code loading
e SmartApps use dynamic method invocation

 Can be exploited to execute any code in the
SmartApp’s security context (i.e., the capabilities
available to the SmartApp)

e Event spoofing is trivially possible

* Direct Approach: Spoof an event message, with the
128 bit ID of the device

* |ndirect Approach: Modify the locationMode. No
access control policy protecting it!

Findings: Sniffing

* A SmartApp can listen to everything from a bound
device

* No access control in place

e Can subscribe to all events, if binding is established.

e A SmartApp can listen to everything if it knows the
128 bit device ID

 Even if the device is not bound to the SmartApp

Why is this bad?

How can the adversary get this device ID?

Findings: Vulnerable 3rd Party Integrations

e OAuth tokens can be stolen, or rather, falsely
acquired

e OAuth tokens enable a 3rd-party to connect to the
user’s SmartThings account.

e To successfully acquire an OAuth token for a user’s
SmartThings account, a Web service needs:

1. aclientID

2. aclient secret

3. the user to sign in, and redirect a code to the
Web service.

* Mobile apps often hardcode the client ID and
secret, and reduce the barriers to acquiring a token.

Attack!

1. Inject Key Codes!

1. Acquire (Steal) Token + Inject

Commands (using capabilities not
requested)

2. Pin Code Snooping:

1. Acquire device ID or bind to the
device (e.g., battery monitor) +

register for certain events (e.g.,
CodeReport)

3. Disabling Vacation Mode (what’s the
harm?)

4. Fake Alarm (what’s the harm?)

Platforms

SmartThings
- PHILIPS

A
1 1A

Background: Nest/Hue

API
3rd party Reference

apps/serwces monitor

| . Token |.Home = True
modify : : 2. Temperature = /2F

Check

. Home : l‘. 3. Camera = On
« - Permission :Modify 4.Time = 5pm
: ,' . Check : Home

O Works with Nest R DataASto re
o]]I:(;Flll_ol\;\il?g:;:ing would like to do the Not you?
OAuth | |Token @
v ﬁ Set Home and Away.
A\ FTL Lights turn off when the room is empty. @

See your camera’s settings, turn it on or off, show images or video Devices ‘

when there’s sound or motion, and share your video stream if it's Q '
public.

FTL Lights turn on when a sound or motion event occurs.

CONTINUE

Methodology

Permission Map generation
Static Analysis

e Source code (third-party apps)
Dynamic analysis

e SSL implementation
Research Questions:

* Access control correctly enforced i.e., bypassing
permissions?

* Apps overprivileged?
e How do external third-party integrations affect security?

Methodology

* Are the platforms enforcing permissions

correctly?
- Using automatically generated permission

maps!

* Permission1 -> Var1 (r,w),
var2(r)

* Permission2 -> var2 (r),
var3 (r)

Findings: Permission Enforcement

Enforces permissions correctly, i.e., as
described in the documentation

- Can bypass user consent!

Indicates whether the link
button has been pressed within
the last 30 seconds. Starting
1.31, Writing is only allowed
for Portal access via cloud
application_key.

linkbutton bool

Findings: Permission Enforcement

- Can bypass user consent!

- Can add/remove other apps!
/4. Delete user from whitelist

Enforces permissions correctly, i.e., as

described in the documentation

-
URL

Method

Version

Permission

/api/<application_key>/config/whitelist/
<element>

DELETE

1.0

Whitelist; Starting 1.31.0: Only via hitps

Attacks using Routines: Lateral Privilege Escalation

=W 2 lemperature = /2F

Recall how routines work

Data Store-Based (DSB) platforms

|. Home = True

3. Camera = On .
4. Time = Spm -

Data Store

Permissions protect reads/writes to high-security
variables (e.g., Camera ON/OFF, user home/away)

HYPOTHETICAL SCENARIO

HYPOTHETICAL SCENARIO

Nest Developer Documentation

0 Caution: You must ask the user if it's ok to change streaming status (turn the camera on/off). The user must agree to this change
before your product can change this field.

25

/)

LATERAL PRIVILEGE ESCALATION

Compromise
app/service

.

-

-
Low-Integrity
Device

;f ‘4

(e.g., Smart Switc

)

2) Leverage
Access

..........
--------- ' ™)

.....

i

High-Integrit
‘—'@aﬂ HO@‘—’ Device

| — —
(e.g., Security Camera)

26

ANALYSIS OVERVIEW

Analysis: Apps

Analysis: Routines

~

_

Vulnerable to Attacks?

~

J

ANALYSIS: APPS

Analyzed the SSL connections in apps using Mallodroid'

650 General smart home apps 111 ‘Works with Nest’ apps
20.6 196 with at least 19.829% with at least

one SSL issue (|134/650) one SSL issue (22/111)

Most common causes:

Accept all certificates! > [rustManager - 20
Don’t verify hostname of signed certificates! —> HostNameVerifier - | |

1. Fahl, Sascha, et al. "Why Eve and Mallory love Android: An analysis of Android SSL (in) security." Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012.

ANALYSIS: ROUTINES

Heterogeneous set Diverse and
ﬂeSt of devices expressive routines

R
o) Turn OFF the camera

we
W A\s]s] —> i —_—
Mmo, VVemompp Home Object when user is home.

|

9 Camera turns OFF!

29

PUTTING IT ALL TOGETHER

Low-security SSL + [Routines > ,
dewce/app vulnerable .

a @@

@& https://
SSL - — N

, !

Secu rity
Camera

. . H |
T RITT8 Man-in-the-Middle! ome:

Kasa app Routine

30

SUCCESSFUL LATERAL PRIVILEGE ESCALATION

Suggestions/Discussion

* Risk-based capabilities would prevent overprivilege.
e User-studies to quantify risk

 App and Device Identity to prevent event spoofing
* Any crypto applications?
e Similar approaches to using UID in Android?

* A unified security perspective across platforms (mobile
apps and smart home) to identify the impact of vulnerable
integrations

e Security-critical devices may be dependent on other
system components to be truly secure.

 Adversaries can leverage seemingly disconnected
components to create an attack.

