
CIS 4930: Secure IoT
Prof. Kaushal Kafle

Lecture 10

Platforms
SmartThings

(pre-2019)

Google Nest

Philips Hue

Background: SmartThings

Capabilities Commands Attributes

e.g. on(), off() e.g. switch, battery

Background: SmartThings

• Written using the SmartThings Developer SDK

• Language Groovy, compiles to Java byte code

• Execute in the SmartThings cloud backend (closed-source)

SmartApps Mini-apps written to facilitate trigger-action programming

Device
Handlers Software-wrappers for physical devices

Background: SmartThings
SmartApps Mini-apps written to facilitate trigger-action programming

Device
Handlers Software-wrappers for physical devices

1. Device Handlers declare a device’s
capability.

2. SmartApps request devices with
specific capabilities.

3. Users bind SmartApps to devices
through Device Handlers.

Capabilities declared in a typical door lock

1

Capabilities requested in a SmartApp.

2

3

Background: SmartThings
• SmartThings uses both the hub and the cloud (pre-2019)

SmartApps Device
Handlers

Commands
Events

Hub Devices

Reference Monitor
Groovy
Runtime Capabilities

OAuth

Web Services

SmartThings Cloud

• Eg Sec Policy: Permission assignment to apps
• Reference monitor: The mechanism that

ensures that the security policy is enforced
correctly

• Reference Monitor Properties
• Complete Mediation

• Tamperproofness

• Verifiability

Motivation
Key question: Is the platform’s API secure?

Confidentiality

Availability Privacy

Authenticity

Integrity

Can attackers
manipulate devices?

(e.g., insert lock codes)
Can attackers disable devices?

(e.g., turn OFF a camera)

Can attackers learn
sensitive information

(e.g., lock codes)

Can attackers learn
private information?

(e.g., the user’s schedule)

Can attackers spoof messages?
(e.g., event spoofing, using

stolen OAuth tokens)

Methodology
• Dynamic Testing

• Static Analysis

• Source code (Groovy SmartApps)

• Binaries (certain Android apps)

• Network Analysis (mainly to build the dataset)

• Research Questions:

• How overprivileged are apps?

• Can events be spoofed?

• What sensitive information can apps access?

• How do external third-party integrations affect security?

• …

Findings
• Overprivilege

• Event injection (i.e., spoofing)

• Event Sniffing

• Vulnerable Third-party integrations

Findings: Overprivilege
• Coarse-grained Capabilities

• App asks for capability “lock”

• Can read the lock’s state, and issue the “lock” and
“unlock” commands.

• What if the app only needs to read the lock state?

• Device-granularity binding

• Apps get all capabilities for a device, if they ask for just
one.

Which of these is a policy problem, vs a mechanism problem?

Policy

Mechanism

Which of these would be harder to fix?

Findings: Event Injection
• Dynamic code loading

• SmartApps use dynamic method invocation

• Can be exploited to execute any code in the
SmartApp’s security context (i.e., the capabilities
available to the SmartApp)

Findings: Event Injection
• Dynamic code loading

• SmartApps use dynamic method invocation

• Can be exploited to execute any code in the
SmartApp’s security context (i.e., the capabilities
available to the SmartApp)

• Event spoofing is trivially possible

• Direct Approach: Spoof an event message, with the
128 bit ID of the device

• Indirect Approach: Modify the locationMode. No
access control policy protecting it!

Findings: Sniffing
• A SmartApp can listen to everything from a bound

device

• No access control in place

• Can subscribe to all events, if binding is established.

• A SmartApp can listen to everything if it knows the
128 bit device ID

• Even if the device is not bound to the SmartApp

How can the adversary get this device ID?

Why is this bad?

Findings: Vulnerable 3rd Party Integrations

• OAuth tokens can be stolen, or rather, falsely
acquired

• OAuth tokens enable a 3rd-party to connect to the
user’s SmartThings account.

• To successfully acquire an OAuth token for a user’s
SmartThings account, a Web service needs:

1. a client ID

2. a client secret

3. the user to sign in, and redirect a code to the
Web service.

• Mobile apps often hardcode the client ID and
secret, and reduce the barriers to acquiring a token.

Attack!
1. Inject Key Codes!

1. Acquire (Steal) Token + Inject
Commands (using capabilities not
requested)

2. Pin Code Snooping:

1. Acquire device ID or bind to the
device (e.g., battery monitor) +
register for certain events (e.g.,
CodeReport)

3. Disabling Vacation Mode (what’s the
harm?)

4. Fake Alarm (what’s the harm?)

Platforms

SmartThings
(pre-2019)

Google Nest

Philips Hue

Background: Nest/Hue

App1

3rd party
apps/services

Appn

1. Home = True
2. Temperature = 72F

3. Camera = On
4. Time = 5pm

…
Data Store

API

modify
Home

modify
Home

Devices

Permission
Check

Reference
monitor
Token
Check

OAuth

Platform
Backend

Token

Methodology
• Permission Map generation

• Static Analysis

• Source code (third-party apps)

• Dynamic analysis

• SSL implementation

• Research Questions:

• Access control correctly enforced i.e., bypassing
permissions?

• Apps overprivileged?

• How do external third-party integrations affect security?

• …

Methodology
• Are the platforms enforcing permissions

correctly?

• Using automatically generated permission

maps!

var1=a
var2=b
var3=c

…

r
w

del

• Permission1 -> Var1 (r,w),
var2(r)

• Permission2 -> var2 (r),
var3 (r)

• ………….

Findings: Permission Enforcement

Enforces permissions correctly, i.e., as
described in the documentation

- Can bypass user consent!

Findings: Permission Enforcement

Enforces permissions correctly, i.e., as
described in the documentation

- Can add/remove other apps!

- Can bypass user consent!

Attacks using Routines: Lateral Privilege Escalation

Recall how routines work

Permissions protect reads/writes to high-security
variables (e.g., Camera ON/OFF, user home/away)

1. Home = True
2. Temperature = 72F

3. Camera = On
4. Time = 5pm

…
Data Store

device1

devicen

. . . .read

writeapp1

appn

. . . . write

read

Data Store-Based (DSB) platforms

HYPOTHETICAL SCENARIO

24

25

Nest Developer Documentation

HYPOTHETICAL SCENARIO

LATERAL PRIVILEGE ESCALATION

Low-Integrity
Device

High-Integrity
Device

(e.g., Smart Switch) (e.g., Security Camera)

26

Smart Home

2) Leverage
Access

1)
Compromise
app/service

ANALYSIS OVERVIEW

27

Analysis: Apps

Secure
Communication?

Analysis: Routines

Vulnerable to Attacks?

ANALYSIS: APPS

28

Analyzed the SSL connections in apps using Mallodroid1

650 General smart home apps 111 ‘Works with Nest’ apps

20.61% with at least
one SSL issue (134/650)

19.82% with at least
one SSL issue (22/111)

Most common causes:
TrustManager - 20

HostNameVerifier - 11
Accept all certificates!

Don’t verify hostname of signed certificates!

1. Fahl, Sascha, et al. "Why Eve and Mallory love Android: An analysis of Android SSL (in) security." Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012.

ANALYSIS: ROUTINES

29

Heterogeneous set
of devices

Diverse and
expressive routines

Wemo App Home Object
 Turn OFF the camera

when user is home.

Camera turns OFF!

PUTTING IT ALL TOGETHER

30

Low-security
device/app

SSL
vulnerable+ + Routines

+

TP-Link
Kasa app

Permission
Token

Nest Data
Store

Routine
Security
Camera

?

I’m
Home!

Man-in-the-Middle!

SUCCESSFUL LATERAL PRIVILEGE ESCALATION

31

Suggestions/Discussion
• Risk-based capabilities would prevent overprivilege.

• User-studies to quantify risk

• App and Device Identity to prevent event spoofing

• Any crypto applications?

• Similar approaches to using UID in Android?

• A unified security perspective across platforms (mobile
apps and smart home) to identify the impact of vulnerable
integrations

• Security-critical devices may be dependent on other
system components to be truly secure.

• Adversaries can leverage seemingly disconnected
components to create an attack.

