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Platforms
SmartThings 

(pre-2019)

Google Nest

Philips Hue



Background: SmartThings

Capabilities Commands Attributes

e.g. on( ), off( ) e.g. switch, battery



Background: SmartThings

• Written using the SmartThings Developer SDK


• Language Groovy, compiles to Java byte code


• Execute in the SmartThings cloud backend (closed-source)

SmartApps Mini-apps written to facilitate trigger-action programming

Device  
Handlers Software-wrappers for physical devices



Background: SmartThings
SmartApps Mini-apps written to facilitate trigger-action programming

Device  
Handlers Software-wrappers for physical devices

1. Device Handlers declare a device’s 
capability. 

2. SmartApps request devices with 
specific capabilities. 

3. Users bind SmartApps to devices 
through Device Handlers. 

Capabilities declared in a typical door lock

1

Capabilities requested in a SmartApp. 

2

3



Background: SmartThings
• SmartThings uses both the hub and the cloud (pre-2019)

SmartApps Device  
Handlers

Commands
Events

Hub Devices

Reference Monitor
Groovy  
Runtime Capabilities

OAuth

Web Services

SmartThings Cloud

• Eg Sec Policy: Permission assignment to apps 
• Reference monitor: The mechanism that 

ensures that the security policy is enforced 
correctly


• Reference Monitor Properties 
• Complete Mediation

• Tamperproofness

• Verifiability



Motivation
Key question: Is the platform’s API secure?

Confidentiality

Availability Privacy

Authenticity

Integrity

Can attackers 
manipulate devices? 

(e.g., insert lock codes)
Can attackers disable devices? 

(e.g., turn OFF a camera)

Can attackers learn 
sensitive information 

(e.g., lock codes)

Can attackers learn 
private information? 

(e.g., the user’s schedule)

Can attackers spoof messages? 
(e.g., event spoofing, using 

stolen OAuth tokens)



Methodology
• Dynamic Testing


• Static Analysis


• Source code (Groovy SmartApps)


• Binaries (certain Android apps)


• Network Analysis (mainly to build the dataset)


• Research Questions: 

• How overprivileged are apps?


• Can events be spoofed?


• What sensitive information can apps access?


• How do external third-party integrations affect security?


• …



Findings
• Overprivilege


• Event injection (i.e., spoofing)


• Event Sniffing


• Vulnerable Third-party integrations



Findings: Overprivilege
• Coarse-grained Capabilities 

• App asks for capability “lock”


• Can read the lock’s state, and issue the “lock” and 
“unlock”  commands.


• What if the app only needs to read the lock state?

• Device-granularity binding 

• Apps get all capabilities for a device, if they ask for just 
one.

Which of these is a policy problem, vs a mechanism problem?

Policy

Mechanism

Which of these would be harder to fix?



Findings: Event Injection
• Dynamic code loading 

• SmartApps use dynamic method invocation


• Can be exploited to execute any code in the 
SmartApp’s security context (i.e., the capabilities 
available to the SmartApp)



Findings: Event Injection
• Dynamic code loading 

• SmartApps use dynamic method invocation


• Can be exploited to execute any code in the 
SmartApp’s security context (i.e., the capabilities 
available to the SmartApp)

• Event spoofing is trivially possible 

• Direct Approach: Spoof an event message, with the 
128 bit ID of the device


• Indirect Approach: Modify the locationMode. No 
access control policy protecting it!



Findings: Sniffing
• A SmartApp can listen to everything from a bound 

device 

• No access control in place


• Can subscribe to all events, if binding is established.

• A SmartApp can listen to everything if it knows the 
128 bit device ID 

• Even if the device is not bound to the SmartApp

How can the adversary get this device ID?

Why is this bad?



Findings: Vulnerable 3rd Party Integrations

• OAuth tokens can be stolen, or rather, falsely 
acquired 

• OAuth tokens enable a 3rd-party to connect to the 
user’s SmartThings account.


• To successfully acquire an OAuth token for a user’s 
SmartThings account, a Web service needs:


1. a client ID 

2. a client secret 

3. the user to sign in, and redirect a code to the 
Web service.


• Mobile apps often hardcode the client ID and 
secret, and reduce the barriers to acquiring a token.



Attack!
1. Inject Key Codes! 

1. Acquire (Steal) Token + Inject 
Commands (using capabilities not 
requested)


2. Pin Code Snooping: 

1. Acquire device ID or bind to the 
device (e.g., battery monitor) + 
register for certain events (e.g., 
CodeReport)


3. Disabling Vacation Mode (what’s the 
harm?)


4. Fake Alarm (what’s the harm?)



Platforms

SmartThings 
(pre-2019)

Google Nest

Philips Hue



Background: Nest/Hue

App1

3rd party 
apps/services

Appn

1. Home = True
2. Temperature = 72F

3. Camera = On
4. Time = 5pm

…
Data Store

API

modify
Home

modify
Home

Devices

Permission 
Check

Reference 
monitor
Token 
Check

OAuth

Platform 
Backend

Token



Methodology
• Permission Map generation


• Static Analysis


• Source code (third-party apps)


• Dynamic analysis 


• SSL implementation


• Research Questions: 

• Access control correctly enforced i.e., bypassing 
permissions? 


• Apps overprivileged? 


• How do external third-party integrations affect security?


• …



Methodology
•  Are the platforms enforcing permissions 

correctly?

•  Using automatically generated permission 

maps!

var1=a
var2=b
var3=c

…

r
w

del

• Permission1 -> Var1 (r,w), 
var2(r)


• Permission2 -> var2 (r), 
var3 (r)


• ………….



Findings: Permission Enforcement

Enforces permissions correctly, i.e., as 
described in the documentation

- Can bypass user consent!



Findings: Permission Enforcement

Enforces permissions correctly, i.e., as 
described in the documentation

- Can add/remove other apps!

- Can bypass user consent!



Attacks using Routines: Lateral Privilege Escalation



Recall how routines work

Permissions protect reads/writes to high-security 
variables (e.g., Camera  ON/OFF, user home/away)

1. Home = True
2. Temperature = 72F

3. Camera = On
4. Time = 5pm

…
Data Store

device1

devicen

. . . .read

writeapp1

appn

. . . . write

read

Data Store-Based (DSB) platforms



HYPOTHETICAL SCENARIO

24
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Nest Developer Documentation

HYPOTHETICAL SCENARIO



LATERAL PRIVILEGE ESCALATION

Low-Integrity 
Device

High-Integrity 
Device

(e.g., Smart Switch) (e.g., Security Camera)

26

Smart Home

2) Leverage 
Access

1) 
Compromise 
app/service



ANALYSIS OVERVIEW
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Analysis: Apps 

Secure 
Communication?

Analysis: Routines 

Vulnerable to Attacks?



ANALYSIS: APPS
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Analyzed the SSL connections in apps using Mallodroid1

650 General smart home apps 111 ‘Works with Nest’ apps

20.61% with at least  
one SSL issue (134/650) 

19.82% with at least  
one SSL issue (22/111)

Most common causes: 
TrustManager - 20

HostNameVerifier - 11
Accept all certificates!

Don’t verify hostname of signed certificates!

1.  Fahl, Sascha, et al. "Why Eve and Mallory love Android: An analysis of Android SSL (in) security." Proceedings of the 2012 ACM conference 
on Computer and communications security. ACM, 2012.



ANALYSIS: ROUTINES
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Heterogeneous set 
of devices

Diverse and 
expressive routines

Wemo App Home Object
         Turn OFF the camera 

when user is home.

Camera turns OFF!



PUTTING IT ALL TOGETHER
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Low-security 
device/app

SSL 
vulnerable+ + Routines

+

TP-Link 
Kasa app

Permission 
Token

Nest Data 
Store

Routine
Security 
Camera

?

I’m 
Home!

Man-in-the-Middle!



SUCCESSFUL LATERAL PRIVILEGE ESCALATION

31



Suggestions/Discussion
• Risk-based capabilities would prevent overprivilege.


• User-studies to quantify risk


• App and Device Identity to prevent event spoofing 


• Any crypto applications?


• Similar approaches to using UID in Android?


• A unified security perspective across platforms (mobile 
apps and smart home) to identify the impact of vulnerable 
integrations


• Security-critical devices may be dependent on other 
system components to be truly secure. 


• Adversaries can leverage seemingly disconnected 
components to create an attack. 


