
CIS 4930:
Secure IoT

Lecture 8

Prof. Kaushal Kafle

1Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Principle of Least Privilege

• Implication 1: you want to reduce the protection
domain to the smallest possible set of objects

• Implication 2: you want to assign the minimal set of
rights to each subject

• Caveat: of course, you need to provide enough rights
and a large enough protection domain to get the job
done.

2

A system should only provide those rights needed to
perform the processes function and no more.

Least Privilege

• Limit permissions to those
required and no more

•Restrict privilege of the
process of J to prevent leaks

•Cannot R/W O3

3

O1 O2 O3

J R RW -

S2 - R -

S3 - R RW

Least Privilege
• Pros:
• Removes unnecessary permissions

(avoid confused deputy?)
• Ensures least permissions to carry

out all functionalities.

• Cons:
• Task execution can still conflict with

security goals.
• Guarantees secure policies?
• No! Least privilege policies based

on functions, not security.

4

Conflicting Goals
• Challenges of building a secure system

• What are the users’ goals?

• What do application developers want?

• What about the data owners
(corporations/governments)?

• What is the purpose of system administrators?

• What about the requirements of operating system
designers?

• Need a satisfying balance among these goals..

5

Access Control Administration
There are two central ways to specify a policy

• Discretionary - object “owners” define policy

• Users have discretion over who has access to what objects
and when (trusted users)

• Canonical example: the UNIX filesystem

–RWX assigned by file owners

• Mandatory - Environment enforces static policy

• Access control policy defined by environment, user has no
control over access control (untrusted users)

• Canonical example: process labeling

• System assigns labels for processes, objects, and a dominance
calculus is used to evaluate rights

6

DAC vs. MAC
• Discretionary Access Control

• User defines the access policy

• Can pass rights onto other subjects (called
delegation)

• Their programs can pass their rights

• Consider a Trojan horse (e.g., you get me to run
your code in my system)

• Mandatory Access Control

• System defines access policy

• Subjects cannot pass rights

• Subjects’ programs cannot pass rights

• Consider a Trojan horse here (e.g., you get me
to run your code in my system)

7

DAC vs. MAC in Access Matrix

• Subjects:
• DAC: users
• MAC: labels

• Objects:
• DAC: files, sockets, etc.
• MAC: labels

• Operations:
• Same

• Administration:
• DAC: owner, copy flag, ...
• MAC: external, reboot

• MAC: largely static matrix;
• DAC: all can change

9

O1 O2 O3

S1 Y Y N

S2 N Y N

S3 N Y Y

Safety Problem
• For a protection system

• (ref mon, protection state, and administrative operations)

• Prove that any future state will not result in the leakage of an
access right to an unauthorized user

• Q: Why is this important?

• For most discretionary access control models,

• Safety is undecideable

• Means that we need another way to prove safety

• Restrict the model (no one uses)

• Test incrementally (constraints)

• How about MAC models?

10

Sandboxing

• An execution environment for programs
that contains a limited set of rights
• A subset of your permissions (meet secrecy

and integrity goals)

• Cannot be changed by the
running program (mandatory)

11

Case Study – Android UIDs

• Android is a Linux-based system
• Apps are security principles, treated

as users
• Apps acquire permissions to access ...
• What separates apps from one

another?
• What separates Apps from the

kernel?
• What prevents apps from access to

arbitrary storage?

12

Access Control Models
• What language should I use to express policy?

• Access Control Model

• Oodles of these

• Some specialize in secrecy

• Bell-LaPadula

• Some specialize in integrity

• Clark-Wilson

• Some focus on jobs

• RBAC

• Some specialize in least privilege

• SELinux Type Enforcement

• Q: Why are there so many different models?

13

Information Flow Control

Information Flow Control

• Ensures authorized flow of information/data among
system entities

15

Access Control Models

• Regulates actions of
subjects on objects

• Concerned about access
to certain resources
within a system

IFC models

• Regulates what info is
being transferred
between entities

• Concerned about data
movement

Multilevel Security

• A multi-level security system tags all object and
subject with security tags classifying them in
terms of sensitivity/access level.

• We formulate policies based on these levels

• We can also add other dimensions, called categories
which horizontally partition the rights space (in a way
similar to that as was done by roles)

16

security levels

categories

US DoD Policy
• Used by the US military (and many others), the Lattice model

uses MLS to define policy

• Levels:

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOP SECRET

• Categories (actually unbounded set)

NUC(lear), INTEL(igence), CRYPTO(graphy)

• Note that these levels are used for physical documents in the
governments as well.

17

Assigning Security Levels

• All subjects are assigned clearance levels and compartments

• Alice: (SECRET, {CRYTPO, NUC})

• Bob: (CONFIDENTIAL, {INTEL})

• Charlie: (TOP SECRET, {CRYPTO, NUC, INTEL})

• All objects are assigned an access class

• DocA: (CONFIDENTIAL, {INTEL})

• DocB: (SECRET, {CRYPTO})

• DocC: (UNCLASSIFIED, {NUC})

18

Evaluating Policy
• Access is allowed if

• subject clearance level >= object sensitivity level and
subject categories object categories (read down)

19

Bob: CONF., {INTEL})
Charlie: TS, {CRYPTO, NUC, INTEL})

Alice: (SEC., {CRYTPO, NUC})

DocA: (CONFIDENTIAL, {INTEL})

DocB: (SECRET, {CRYPTO})

DocC: (UNCLASSIFIED, {NUC})

Q: What would write-up be?

Bell-LaPadula (BLP) Model

• A Confidentiality MLS policy that enforces:

• Simple Security Policy: a subject at specific classification level
cannot read data with a higher classification level. This is short
hand for “no read up”.

• * (star) Property: also known as the confinement property, states
that subject at a specific classification cannot write data to a
lower classification level. This is shorthand for “no write down”.

• E.g., corporate hierarchies

20

How about integrity?
• Before: MLS considered who can “read” a document

(confidentiality)
• Integrity considers who can “write” to a document
• Thus, who can effect the integrity (content) of a document
• Example: You may not care who can read DNS records, but

you better care who writes to them!

• Biba defined a dual of secrecy for integrity
• Goal: Do not depend on data from lower integrity

principals
• Flow permitted only from high to low integrity
• User’s integrity level must be above or equal to that of the

file being modified.

21

Biba integrity
• Biba: User’s integrity level must be above or equal to that

of the file being modified.

• Lattice policy with, “no read down, no write up”

•Users can only create content at or below their own
integrity level (a monk may write a prayer book that
can be read by commoners, but not one to be read by
a high priest).

•Users can only view content at or above their own
integrity level (a monk may read a book written by the
high priest, but may not read a pamphlet written by a
lowly commoner).

22

Biba (example)

• Which users can modify what documents?
• Remember “no read down, no write up”

23

Bob: (CONF., {INTEL})
Charlie: (TS, {CRYPTO, NUC, INTEL})

Alice: (SEC., {CRYTPO, NUC})

DocA: (CONFIDENTIAL, {INTEL})

DocB: (SECRET, {CRYPTO})

DocC: (UNCLASSIFIED, {NUC})

?????

Biba (example)

• Which users can modify what documents?
• Remember “no read down, no write up”

24

Bob: (CONF., {INTEL})
Charlie: (TS, {CRYPTO, NUC, INTEL})

Alice: (SEC., {CRYTPO, NUC})

DocA: (CONFIDENTIAL, {INTEL})

DocB: (SECRET, {CRYPTO})

DocC: (UNCLASSIFIED, {NUC})

Biba - Guards
• What happens if the higher integrity user needs information

from lower integrity file?

• E.g., reading from network sockets

• Unauthorized under Biba!

• Unless subject is fully assured to upgrade to high
integrity or discard low integrity data

• Done by ‘guards’

25

LOMAC

•Low-Water Mark integrity

•Change integrity level based on actual
dependencies

•Subject is initially at the highest integrity

•But integrity level can change based on objects
accessed

•Ultimately, subject has integrity of lowest object read

•Example of “self revocation”

26

Integrity, Sewage, and
Wine

•Mix a gallon of sewage
and one drop of wine
gives you?

•Mix a gallon of wine and
one drop of sewage gives
you?

27

Integrity is really a contaminant problem:
you want to make sure your data is not
contaminated with data of lower integrity.

	Default Section
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Principle of Least Privilege
	Slide 3: Least Privilege
	Slide 4: Least Privilege
	Slide 5: Conflicting Goals
	Slide 6: Access Control Administration
	Slide 7: DAC vs. MAC
	Slide 9: DAC vs. MAC in Access Matrix
	Slide 10: Safety Problem
	Slide 11: Sandboxing
	Slide 12: Case Study – Android UIDs
	Slide 13: Access Control Models
	Slide 14: Information Flow Control
	Slide 15: Information Flow Control
	Slide 16: Multilevel Security
	Slide 17: US DoD Policy
	Slide 18: Assigning Security Levels
	Slide 19: Evaluating Policy
	Slide 20: Bell-LaPadula (BLP) Model
	Slide 21: How about integrity?
	Slide 22: Biba integrity
	Slide 23: Biba (example)
	Slide 24: Biba (example)
	Slide 25: Biba - Guards
	Slide 26: LOMAC
	Slide 27: Integrity, Sewage, and Wine

