
CIS 4930:
Secure IoT

Lecture 6

Prof. Kaushal Kafle

1Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel



Class Notes

• Grades for homework 1 posted. 

• Homework 2 due on 09/19

• 3-4 groups yet to meet to discuss their project 

proposals. 



Eavesdropping
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Alice’s Switch

Internet

Bob’s Switch



Why is crypto useful?
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Why is this bad?

Alice uses the Internet for:

• Email

• Banking
• Online shopping
• Social networking

• …

• Its just an instant message, right?
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Let’s use that crypto stuff
• Let’s build some new protocols

• HTTP → SecureHTTP

• POP → POPSecure

• IMAP → CryptoIMAP

• SMTP → SMTPSec

• FTP → FTPS

• Jabber → SecJabber

• Telnet → TelCryptNet

Let’s build a crypto-
wrapper standard 
instead



IP Packet

Security Layer
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Unencrypted
Protocol



What properties should this 
crypto-wrapper have?

• Confidentiality

• Integrity

• Authenticity

• Server

• Client

• Mutual authentication
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SSL / TLS
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History
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• Secure Sockets Layer (SSL) developed by Netscape (remember them?) in 
1995

• Version 1 never released

• Version 2 incorporated into Netscape Navigator 1.1

• Microsoft fixes vulnerabilities in SSLv2 and introduces Private 
Communications Technology (PCT) protocol

• Netscape overhauls SSLv2, fixing some more security issues, and releases 
SSLv3

• IETF takes over and releases Transport Layer Security (TLS), a non-
interoperable upgrade to SSLv3

• current version is TLS version 1.3, RFC 8446 (August 2018)

https://tools.ietf.org/html/rfc8446


K.I.S.S.

• Application-layer 
protocol

• Operates over TCP --
WHY?
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Overview
• Alice (client) initiates conversation with Bob (server)

• Bob sends Alice his certificate

• Alice verifies certificate

• Alice picks a random number S and sends it to Bob, 
encrypted with Bob’s public key

• Both parties derive key material from S

• Client and server exchange encrypted and integrity-
protected data
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SSLv2 Handshake
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ClientHello, Version, Cipher list., RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Alice randomly chooses S, 
the “pre-master secret”Alice computes 

master secret k as
K=f(S,RAlice,RBob) 

Bob computes master 
secret k as
K=f(S,RAlice,RBob) 

Encryption and 
integrity keys derived 
from Master Secret

Nonce



Cryptographic Parameters
• Generated from
• the master secret K
• Rc
• Rs

• Six values to be generated

• client authentication and encryption keys

• server authentication and encryption keys

• client encryption IV 

• server encryption IV
• Generator functions: ki = gi(K,Rc,Rs)

14



Authentication
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Q: Which parties 
are authenticated?



Cipher Suites
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• Alice gives Bob a 
list of supported 
cipher suites;  
Bob makes final 
choice

• Includes 
encryption 
algorithms, key 
length, block 
mode, and 
integrity 
checksum 
algorithm

• Only 5 supported 
in TLS1.3, >30 in 
TLS1.2

% openssl ciphers –v

TLS_AES_256_GCM_SHA384   TLSv1.3 Kx=any   Au=any   Enc=AESGCM(256) Mac=AEAD

TLS_CHACHA20_POLY1305_SHA256  TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD

TLS_AES_128_GCM_SHA256   TLSv1.3 Kx=any    Au=any   Enc=AESGCM(128)      Mac=AEAD

ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH   Au=ECDSA Enc=AESGCM(256) Mac=AEAD

ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH  Au=RSA   Enc=AESGCM(256)   Mac=AEAD

DHE-RSA-AES256-GCM-SHA384      TLSv1.2 Kx=DH       Au=RSA   Enc=AESGCM(256)   Mac=AEAD

ECDHE-ECDSA-CHACHA20-POLY1305 TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

ECDHE-RSA-CHACHA20-POLY1305  TLSv1.2 Kx=ECDH  Au=RSA  Enc=CHACHA20/POLY1305(256) Mac=AEAD

DHE-RSA-CHACHA20-POLY1305  TLSv1.2 Kx=DH   Au=RSA   Enc=CHACHA20/POLY1305(256) Mac=AEAD

..

..

..

• Key Exchange algos e.g. RSA, DH, ECDH

• Authentication algos e.g., RSA

• Bulk encryption algos e.g., AES

• MAC algos e.g., SHA-256



SSLv2 Problems
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

Alice Bob
Weakest ciphers

E(K’,Data)



SSLv3 Fixes
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S), hK(all prior handshake msgs)

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob

Keyed hash over previous
messages ensures 

integrity protection



SSL/TLS with 
Server and Client Authentication
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., CertBob, Cipher, RBob

E(Bob+,S), CertAlice

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob
CertRequest

Sig(Alice-,hK(all prior handshake msgs))

Signature proves Alice 
knows private key 

associated with 
her certificate



20

Problems with TLS/SSL



If Bob’s cert isn’t verified, how do you know 
you’re actually talking to Bob?
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ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob
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Solution:  Use a PKI
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• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Do you recall why this is problematic?
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Recall: The DigiNotar Incident



SSL/TLS in 
the Real 
World
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Network Stack, revisited
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Physical

Link

Network

Transport

Application

SSL/TLS



SSL/TLS in the Real World
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• All (modern) browsers support TLS 1.2, TLS1.3

• SSLv3 deprecated in most major browsers

• Client authentication very rare  -- WHY?

• Implementations:

• HTTP (80) → HTTPS (443)

• POP (110) → POP3S (995)

• IMAP (143) → IMAPS (993)

• SMTP (25) → SMTP with SSL (465)

• FTP (20,21)→ FTPS (989,990)

• Telnet (23) → Telnets (992)



SSL/TLS and the Web
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Web
Browser

Web
Server

• HTTPS:  Tunnel HTTP over SSL/TLS

• Add golden lock symbol

Supported ciphers

Chosen cipher

Certificate

Generate shared secret keys

Transfer HTTP over SSL channel



The verifier matters
• SSL is an application layer protocol

• Software developers must use it correctly

• Smartphone World

• Possibly millions of 
applications that use SSL

• Many apps do not verify 
certificates correctly – 
Implications?

• Developers change default 
configuration – WHY?

• Pre-Smartphone World

• Small set of 
applications that use 
SSL (E.g., Web 
Browser)

• Lots of attention to 
those apps
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SSL Verification in Apps
• Even popular apps are vulnerable to incorrect SSL use

• Banking

• Document storage

• Social Networks (Facebook, before Firesheep)

• …..and IoT apps

• ...

• Common mistakes: Generally, in HTTPS use.

1. Not using SSL

2. Mixed SSL use

3. Accepting all certificates

4. Accepting all hostnames (i.e., regardless of the CN)

5. Trusting all CAs
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Not using SSL

• What happens when you don’t use SSL? E.g., 

• If I can guess, infer, or steal the session ID, game over

• Are there any use cases where not using SSL would be 
okay?

• It depends. However, unless confidentiality and 
authenticity are never going to be important to the 
app, use SSL!
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http://www.mybank.com/loggedin?sessionid=11

Lesson 1: Always use SSL (i.e., mostly HTTPS)

http://www.mybank.com/loggedin?sessionid=11


Mixed SSL use

• Mixed use of HTTP and HTTPS on the same site.

• Use case 1: Login page is not HTTPS, but the login form is 
submitted to a HTTPS page.

• MiTM can replace HTTPS links with HTTP (i.e., SSL Stripping)

• Use case 2: Login page is HTTPS, but the rest of the website 
may be HTTP

• Unencrypted cookies/session IDs! (e.g., Firesheep)
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Lesson 2: Use HTTPS throughout



Certificate Validation
• Apps can override the TrustManager interface

• What is wrong with this example? It accepts all server 
certificates!
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Lesson 3: Always validate the server’s certificate 

https://stackoverfl
ow.com/questions
/2703161/how-to-
ignore-ssl-
certificate-errors-
in-apache-
httpclient-4-0

https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0


Using self-signed certificates

• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.
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Step 1:  Read in your 

certificate

Step 2:  Create 

custom TrustManager

Step 3: Compare 

server certificate with 

the hard-coded one



Using self-signed certificates
• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.

• Allows secure use of self-signed certificates

• Variation:

• Pinning own CA certificate 

• Gives you more flexibility.

• How to change the certificate? 

• App updates!

• Don’t have to trust 100s of Root CAs!
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Lesson 4: Certificate pinning, if done correctly, 

is more secure than default SSL use.



Hostname Verification
• Back to basics: What does a certificate provide?

• Binding between a public key and identity

• Any certificate issued by any trusted CA will be accepted!

• i.e., HostName= google.com, but cert has CN=foogle.com?
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https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

✓
Lesson 5: Never override the HostNameVerifier

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1


The End
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