
CIS 4930:
Secure IoT

Lecture 6

Prof. Kaushal Kafle

1Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes

• Grades for homework 1 posted.

• Homework 2 due on 09/19

• 3-4 groups yet to meet to discuss their project

proposals.

Eavesdropping

3

Alice’s Switch

Internet

Bob’s Switch

Why is crypto useful?

4

Why is this bad?

Alice uses the Internet for:

• Email

• Banking
• Online shopping
• Social networking

• …

• Its just an instant message, right?

6

Let’s use that crypto stuff
• Let’s build some new protocols

• HTTP → SecureHTTP

• POP → POPSecure

• IMAP → CryptoIMAP

• SMTP → SMTPSec

• FTP → FTPS

• Jabber → SecJabber

• Telnet → TelCryptNet

Let’s build a crypto-
wrapper standard
instead

IP Packet

Security Layer

7

Unencrypted
Protocol

What properties should this
crypto-wrapper have?

• Confidentiality

• Integrity

• Authenticity

• Server

• Client

• Mutual authentication

8

SSL / TLS

9

History

10

• Secure Sockets Layer (SSL) developed by Netscape (remember them?) in
1995

• Version 1 never released

• Version 2 incorporated into Netscape Navigator 1.1

• Microsoft fixes vulnerabilities in SSLv2 and introduces Private
Communications Technology (PCT) protocol

• Netscape overhauls SSLv2, fixing some more security issues, and releases
SSLv3

• IETF takes over and releases Transport Layer Security (TLS), a non-
interoperable upgrade to SSLv3

• current version is TLS version 1.3, RFC 8446 (August 2018)

https://tools.ietf.org/html/rfc8446

K.I.S.S.

• Application-layer
protocol

• Operates over TCP --
WHY?

11

Overview
• Alice (client) initiates conversation with Bob (server)

• Bob sends Alice his certificate

• Alice verifies certificate

• Alice picks a random number S and sends it to Bob,
encrypted with Bob’s public key

• Both parties derive key material from S

• Client and server exchange encrypted and integrity-
protected data

12

SSLv2 Handshake

13

ClientHello, Version, Cipher list., RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Alice randomly chooses S,
the “pre-master secret”Alice computes

master secret k as
K=f(S,RAlice,RBob)

Bob computes master
secret k as
K=f(S,RAlice,RBob)

Encryption and
integrity keys derived
from Master Secret

Nonce

Cryptographic Parameters
• Generated from
• the master secret K
• Rc
• Rs

• Six values to be generated

• client authentication and encryption keys

• server authentication and encryption keys

• client encryption IV

• server encryption IV
• Generator functions: ki = gi(K,Rc,Rs)

14

Authentication

15

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

Q: Which parties
are authenticated?

Cipher Suites

16

• Alice gives Bob a
list of supported
cipher suites;
Bob makes final
choice

• Includes
encryption
algorithms, key
length, block
mode, and
integrity
checksum
algorithm

• Only 5 supported
in TLS1.3, >30 in
TLS1.2

% openssl ciphers –v

TLS_AES_256_GCM_SHA384 TLSv1.3 Kx=any Au=any Enc=AESGCM(256) Mac=AEAD

TLS_CHACHA20_POLY1305_SHA256 TLSv1.3 Kx=any Au=any Enc=CHACHA20/POLY1305(256) Mac=AEAD

TLS_AES_128_GCM_SHA256 TLSv1.3 Kx=any Au=any Enc=AESGCM(128) Mac=AEAD

ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD

ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD

DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD

ECDHE-ECDSA-CHACHA20-POLY1305 TLSv1.2 Kx=ECDH Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

ECDHE-RSA-CHACHA20-POLY1305 TLSv1.2 Kx=ECDH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

DHE-RSA-CHACHA20-POLY1305 TLSv1.2 Kx=DH Au=RSA Enc=CHACHA20/POLY1305(256) Mac=AEAD

..

..

..

• Key Exchange algos e.g. RSA, DH, ECDH

• Authentication algos e.g., RSA

• Bulk encryption algos e.g., AES

• MAC algos e.g., SHA-256

SSLv2 Problems

17

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

Alice Bob
Weakest ciphers

E(K’,Data)

SSLv3 Fixes

18

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S), hK(all prior handshake msgs)

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob

Keyed hash over previous
messages ensures

integrity protection

SSL/TLS with
Server and Client Authentication

19

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., CertBob, Cipher, RBob

E(Bob+,S), CertAlice

hK(keyed hash of handshake msgs)

E(K’,Data)

Alice Bob
CertRequest

Sig(Alice-,hK(all prior handshake msgs))

Signature proves Alice
knows private key

associated with
her certificate

20

Problems with TLS/SSL

If Bob’s cert isn’t verified, how do you know
you’re actually talking to Bob?

21

ClientHello, Version, Cipher list. RAlice

ServerHello, Ver., Cert., Chosen cipher, RBob

E(Bob+,S)

E(K’,Data)

Alice Bob

22

Solution: Use a PKI

23

• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Do you recall why this is problematic?

24

Recall: The DigiNotar Incident

SSL/TLS in
the Real
World

27

Network Stack, revisited

28

Physical

Link

Network

Transport

Application

SSL/TLS

SSL/TLS in the Real World

29

• All (modern) browsers support TLS 1.2, TLS1.3

• SSLv3 deprecated in most major browsers

• Client authentication very rare -- WHY?

• Implementations:

• HTTP (80) → HTTPS (443)

• POP (110) → POP3S (995)

• IMAP (143) → IMAPS (993)

• SMTP (25) → SMTP with SSL (465)

• FTP (20,21)→ FTPS (989,990)

• Telnet (23) → Telnets (992)

SSL/TLS and the Web

30

Web
Browser

Web
Server

• HTTPS: Tunnel HTTP over SSL/TLS

• Add golden lock symbol

Supported ciphers

Chosen cipher

Certificate

Generate shared secret keys

Transfer HTTP over SSL channel

The verifier matters
• SSL is an application layer protocol

• Software developers must use it correctly

• Smartphone World

• Possibly millions of
applications that use SSL

• Many apps do not verify
certificates correctly –
Implications?

• Developers change default
configuration – WHY?

• Pre-Smartphone World

• Small set of
applications that use
SSL (E.g., Web
Browser)

• Lots of attention to
those apps

31

SSL Verification in Apps
• Even popular apps are vulnerable to incorrect SSL use

• Banking

• Document storage

• Social Networks (Facebook, before Firesheep)

• …..and IoT apps

• ...

• Common mistakes: Generally, in HTTPS use.

1. Not using SSL

2. Mixed SSL use

3. Accepting all certificates

4. Accepting all hostnames (i.e., regardless of the CN)

5. Trusting all CAs

32

Not using SSL

• What happens when you don’t use SSL? E.g.,

• If I can guess, infer, or steal the session ID, game over

• Are there any use cases where not using SSL would be
okay?

• It depends. However, unless confidentiality and
authenticity are never going to be important to the
app, use SSL!

33

http://www.mybank.com/loggedin?sessionid=11

Lesson 1: Always use SSL (i.e., mostly HTTPS)

http://www.mybank.com/loggedin?sessionid=11

Mixed SSL use

• Mixed use of HTTP and HTTPS on the same site.

• Use case 1: Login page is not HTTPS, but the login form is
submitted to a HTTPS page.

• MiTM can replace HTTPS links with HTTP (i.e., SSL Stripping)

• Use case 2: Login page is HTTPS, but the rest of the website
may be HTTP

• Unencrypted cookies/session IDs! (e.g., Firesheep)

34

Lesson 2: Use HTTPS throughout

Certificate Validation
• Apps can override the TrustManager interface

• What is wrong with this example? It accepts all server
certificates!

35

Lesson 3: Always validate the server’s certificate

https://stackoverfl
ow.com/questions
/2703161/how-to-
ignore-ssl-
certificate-errors-
in-apache-
httpclient-4-0

https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0
https://stackoverflow.com/questions/2703161/how-to-ignore-ssl-certificate-errors-in-apache-httpclient-4-0

Using self-signed certificates

• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.

36

Step 1: Read in your

certificate

Step 2: Create

custom TrustManager

Step 3: Compare

server certificate with

the hard-coded one

Using self-signed certificates
• The right way: Certificate Pinning

• i.e., hardcode your self-signed certificate.

• Allows secure use of self-signed certificates

• Variation:

• Pinning own CA certificate

• Gives you more flexibility.

• How to change the certificate?

• App updates!

• Don’t have to trust 100s of Root CAs!

37

Lesson 4: Certificate pinning, if done correctly,

is more secure than default SSL use.

Hostname Verification
• Back to basics: What does a certificate provide?

• Binding between a public key and identity

• Any certificate issued by any trusted CA will be accepted!

• i.e., HostName= google.com, but cert has CN=foogle.com?

38

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

✓
Lesson 5: Never override the HostNameVerifier

https://stackoverflow.com/questions/2012497/accepting-a-certificate-for-https-on-android?lq=1

The End

39

	Default Section
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Class Notes

	SSL Motivation
	Slide 3: Eavesdropping
	Slide 4: Why is crypto useful?
	Slide 5: Why is this bad?
	Slide 6: Let’s use that crypto stuff
	Slide 7
	Slide 8: What properties should this crypto-wrapper have?

	SSL/TLS
	Slide 9: SSL / TLS
	Slide 10: History
	Slide 11: K.I.S.S.
	Slide 12: Overview
	Slide 13: SSLv2 Handshake
	Slide 14: Cryptographic Parameters
	Slide 15: Authentication
	Slide 16: Cipher Suites
	Slide 17: SSLv2 Problems
	Slide 18: SSLv3 Fixes
	Slide 19: SSL/TLS with Server and Client Authentication
	Slide 20: Problems with TLS/SSL
	Slide 21: If Bob’s cert isn’t verified, how do you know you’re actually talking to Bob?
	Slide 22: Solution: Use a PKI
	Slide 23
	Slide 24: Recall: The DigiNotar Incident

	SSL/TLS in the real world
	Slide 27: SSL/TLS in the Real World
	Slide 28: Network Stack, revisited
	Slide 29: SSL/TLS in the Real World
	Slide 30: SSL/TLS and the Web

	Verifier errors
	Slide 31: The verifier matters
	Slide 32: SSL Verification in Apps
	Slide 33: Not using SSL
	Slide 34: Mixed SSL use
	Slide 35: Certificate Validation
	Slide 36: Using self-signed certificates
	Slide 37: Using self-signed certificates
	Slide 38: Hostname Verification
	Slide 39: The End

