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Class Notes

• Required to submit the finalized project for your team so 
meet with me asap to do that!

• Teams that have met -> submit the finalized proposal and 
begin work!

• Midterm date: 10/15
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From Last Class

• Message Authentication Codes (MAC): 

• Generate and send a value computed using the original 
message and a secret key 

• Provides authenticity and integrity

• Hash functions:

• One-way function to generate fixed-length hash (or digest)

• One of the use-cases: Generating MACs!
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General Structure of Hash
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Message Extension Attack

• Why is MACk(M) = H(k|M) bad?

• How can Eve append M’ to M?

• Goal: compute H(k|M|M’) without knowing k

• Solution: Use H(k|M) as IV for next f iteration in H() 
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A Better MAC

• Objectives

• Use available hash functions without modification

• Easily replace embedded hash function as more secure 
ones are found

• Preserve original performance of hash function

• Easy to use
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HMAC

• Attacker cannot extend MAC as 
before
• Try it out!
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(from Stallings, Crypto and Net Security)
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Basic truths of cryptography

• Cryptography is not frequently 
the source of security 
problems

• Algorithms are well known and 
widely studied

• Vetted through crypto 
community

• Avoid any “proprietary” 
encryption

• Claims of “new technology” or 
“perfect security” are almost 
assuredly snake oil
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Building systems/apps with 
cryptography

• Use quality libraries

• SSLeay, cryptolib, openssl

• Find out what cryptographers think of a 
package before using it

• Code review like crazy

• Educate yourself on how to use library

• Understand caveats by original designer and 
programmer 
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Encryption and Message 
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“network security is fun”,
MACk2(“network security is fun!”)}}
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Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the hard 
part?



Private-key crypto is like a door lock
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Why?



Public Key Crypto
(10,000 ft view)
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• Separate keys for encryption and decryption

• Public key:  anyone can know this

• Private key:  kept confidential

• Anyone can encrypt a message to you using your 
public key

• The private key (kept confidential) is required to 
decrypt the communication

• Alice and Bob no longer have to have a priori shared a 
secret key



Public Key Cryptography

• Each key pair consists of a public and 
private component: k+ (public key), k-

(private key)

• Public keys are distributed (typically) 
through public key certificates

• Anyone can communicate secretly with 
you if they have your certificate
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RSA
(Rivest, Shamir, Adelman)

• The dominant public key 
algorithm 

• The algorithm itself is 
conceptually simple

•Why it is secure is very 
deep (number theory)

•Uses properties of 
exponentiation modulo a 
product of large primes

"A method for obtaining Digital 
Signatures and Public Key 
Cryptosystems“, Communications of 

the ACM, Feb. 1978.
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Modular Arithmetic
• Integers Zn = {0, 1, 2, ..., n-1}

• x mod n = remainder of x divided by n

• 5 mod 13 = 5

• 13 mod 5 = 3

• y is modular inverse of x iff xy mod n = 1

• E.g. Z11 -> 4 is inverse of 3, 5 is inverse of 9, 7 is inverse of 8

• If n is prime, then Zn has modular inverses for all integers 
except 0

15



Euler’s Totient Function

• coprime: having no common positive factors other than 1 (also 
called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function:  Φ(n) = number of integers less than 
or equal to n that are coprime with n

where product ranges over distinct primes dividing n

• If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

• If m is prime, then Φ(m) = m - 1
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Euler’s Totient Function
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If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

If m is prime, then Φ(m) = m - 1

For primes and co-primes:



RSA Key Generation
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1. Choose distinct primes p and q

2. Compute n = pq

3. Compute Φ(n) = Φ(pq)           =
Φ(p)Φ(q)= (p-1)(q-1)   

4. Randomly choose 1<e< Φ(pq) 
such that e and Φ(pq) are 
coprime.  e is the public key 
exponent

5. Compute d=e-1 mod(Φ(pq)).   
d is the private key exponent

Example:

let p=3, q=11

n=33 

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3



RSA Encryption/Decryption

• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext:  4

• E({7,33},4) = 47 mod 33 = 16384 mod 33 = 16

• D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4
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Is RSA Secure?

• {e,n} is public information

• If you could factor n into p*q, then

• could compute (n) =(p-1)(q-1) 

• could compute d = e-1 mod (n)

•would know the private key <d,n>!

• But: factoring large integers is hard!

• classical problem worked on for centuries; no 
known reliable, fast method
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Security (Cont’d)
• At present, key sizes of 1024 bits are considered 

to be secure, but 2048 bits is better

• Tips for making n difficult to factor

1.p and q lengths should be similar (ex.: ~500 
bits each if key is 1024 bits)

2.both (p-1) and (q-1) should contain a “large” 
prime factor

3.gcd(p-1, q-1) should be “small”

4.d should be larger than n1/4



RSA
• Most public key systems use at least 1,024-bit keys

• Key size not comparable to symmetric key algorithms

• RSA is much slower than most symmetric crypto algorithms

• AES:  ~161 MB/s

• RSA:  ~82 KB/s

• This is too slow to use for modern network communication!

• Solution:  Use hybrid model
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Hybrid Cryptosystems
• In practice, public-key cryptography is used to secure and 

distribute session keys.

• These keys are used with symmetric algorithms for 
communication.

• Sender generates a random session key, encrypts it using 
receiver’s public key and sends it.

• Receiver decrypts the message to recover the session key.

• Both encrypt/decrypt their communications using the 
same key.

• Key is destroyed in the end.
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Hybrid Cryptosystems
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Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek(“Network security is fun!”)

(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.



Public Key Cryptography

• Each key pair consists of a public and 
private component: k+ (public key), k-

(private key)
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What happens if we flip the order?



Encryption using private key

• Encryption and Decryption

Ek-(M) : ciphertext = plaintextd mod n

Dk+(ciphertext) : plaintext = ciphertexte mod n

• E.g.,

• E({3,33},4) = 43 mod 33 = 64 mod 33 = 31

• D({7,33},31) = 317 mod 33 = 27,512,614,111 mod 33 
= 4

• Q:  Why encrypt with private key?

• Non Repudiation!
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Digital Signatures
• A digital signature serves the same purpose as a real 

signature.

• It is a mark that only sender can make

• Other people can easily recognize it as belonging to the  
sender

• Digital signatures must be:

• Unforgeable: If Alice signs message M with signature S, it  is 
impossible for someone else to produce the pair (M, S).

• Authentic:  If Bob receives the pair (M, S) and knows Alice’s 
public key, he can check (“verify”) that the signature is really 
from Alice

• Example: Code signing
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How can Alice sign a digital 
document?

• Digital document:  M

• Since RSA is slow, hash M to compute digest:  m = h(M)

• Signature:    Sig(M) = Ek-(m) = md mod n

• Since only Alice knows k-, only she can create the signature

• To verify:     Verify(M,Sig(M))

• Bob computes h(M) and compares it with Dk+(Sig(M))

• Bob can compute Dk+(Sig(M)) since he knows k+ (Alice’s public key)

• If and only if they match, the signature is verified  (otherwise, 
verification fails)
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Putting it all together
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Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek( m, EA-(h(m)) )

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Define m = “Network security is fun!”



Birthday Attack 
and Signatures
• Since signatures depend on 

hash functions, they also 
depend on the hash function’s 
collision resistance

• Don’t use MD5, and start 
moving away from SHA1

30(from Stallings, Crypto and Net Security)



Properties of a 
Digital Signature

• No forgery possible: No one can forge a message 
that is purportedly from Alice

• Authenticity check: If you get a signed message you 
should be able to verify that it’s really from Alice

• No alteration/Integrity: No party can undetectably 
alter a signed message

• Provides authentication, integrity, and non-
repudiation (cannot deny having signed a signed 
message)
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Non-Repudiation
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Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
MACk(“network security is fun!”)}

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
EA-(h(“network security is fun!”))}

Which of these 
offer non-
repudiation?

MAC



Public Key Crypto
(10,000 ft view)
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• Separate keys for encryption and decryption

• Public key:  anyone can know this

• Private key:  kept confidential

• Anyone can encrypt a message to you using your public key

• The private key (kept confidential) is required to decrypt the 
communication

• Alice and Bob no longer have to have a priori shared a secret key

Problem? YES. How do we know if Alice’s key is really Alice’s?



But how do we verify we’re 
using the correct public key?
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Alice

Bob’s public key is              . Trust me.

Not Bob



Short 
answer:  We 

can’t.
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It’s turtles all 
the way down.



Why not just 
use a database?

• Every user has his/her own public key and private key.  

• Public keys are all published in a database.

• Alice gets Bob’s public key from the database

• Alice encrypts the message and sends it to Bob using 
Bob’s public key.

• Bob decrypts it using his private key.

• What’s the problem with this approach?
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Solving the 
Turtles Problem
• We need a trust anchor

• there must be someone with 
authority

• requires a priori trust

• Solution:  form a trust 
hierarchy

• “I believe X because...”

• “Y vouches for X and...”

• “Z vouches for Y and...” 

• “I implicitly trust Z.”
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Browser
Certificate
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What’s a certificate?
• A certificate …

• … makes an association between an identity 
and a private key

• … contains public key information {e,n}

• … has a validity period

• … is signed by some certificate authority (CA)

• … identity may have been vetted by a 
registration authority (RA)

• People trust CA (e.g., Verisign) to vet identity
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Why do I trust the certificate?

• A collections of “root” CA certificates (self-signed)

•… baked into your browser

•… vetted by the browser manufacturer

•… supposedly closely guarded

• trust anchor

• Root certificates used to validate certificate

•Vouches for certificate’s authenticity
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Public Key 
Infrastructure

•Hierarchy of keys used to authenticate 
certificates

•Requires a root of trust (i.e., a trust anchor)
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What is a PKI?
• Rooted tree of 

CAs

• Cascading 
issuance

• Any CA can 
issue cert

• CAs issue certs 
for children

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …
44

*

*.usf.edu

*.cs.
usf.
edu

*.chase.com



Certificate Validation

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …

Certificate

Signature
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PKIs in Reality
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Obtaining a Certificate
1.Alice has some identity document AID and generates a keypair (A-, 

A+)

2.A → CA :  {A+, AID}, Sig(A-, {A+, AID})

• CA verifies signature -- proves Alice has A-

• CA may (and should!) also verify AID offline

3.CA signs {A+, AID} with its private key (CA-)

• CA attests to binding between A+ and AID

4.CA → A : {A+, AID}, Sig(CA-, {A+, AID})

• this is the certificate;  Alice can freely publish it

• anyone who knows CA+ (and can therefore validate the CA’s 
signature) knows that CA “attested to” {A+, AID}

• note that CA never learns A-
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• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Is this problematic?
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The DigiNotar Incident



DigiNotar Incident

• DigiNotar is a CA based in 
the Netherlands that is 
(well, was) trusted by 
most OSes and browsers

• July 2011:  Issued fake 
certificate for gmail.com 
to site in Iran that ran 
MitM attack...

• ... this fooled most 
browsers, but...
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DigiNotar Incident
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• As added security 
measure, Google 
Chrome hardcodes 
fingerprint of 
Google’s certificate

• Since DigiNotar 
didn’t issue 
Google’s true 
certificate, this 
caused an error 
message in 
Chrome



How secure is the verifier?

• What happens if attacker is able to insert his 
public root CA key to the verifier’s list of trusted 
CAs?

• More generally, what are the consequences if the 
verifier is compromised?

• Q: What’s the consequences for IoT devices/apps?
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The End
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