
CIS 4930:
Secure IoT

Lecture 5

Prof. Kaushal Kafle

1Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes

• Required to submit the finalized project for your team so
meet with me asap to do that!

• Teams that have met -> submit the finalized proposal and
begin work!

• Midterm date: 10/15

2

From Last Class

• Message Authentication Codes (MAC):

• Generate and send a value computed using the original
message and a secret key

• Provides authenticity and integrity

• Hash functions:

• One-way function to generate fixed-length hash (or digest)

• One of the use-cases: Generating MACs!

3

General Structure of Hash

4

f f
n n

n

IV =

CV0 CV1

b

n

CVL–1

CVLn

b

Y0 Y1 YL–1

IV = Initial value

CVi = chaining variable

Yi = ith input block

f = compression algorithm

L = number of input blocks

n = length of hash code

b = length of input block

Figure 11.8 General Structure of Secure Hash Code

b

f

(from Stallings, Crypto and Net Security)

Message Extension Attack

• Why is MACk(M) = H(k|M) bad?

• How can Eve append M’ to M?

• Goal: compute H(k|M|M’) without knowing k

• Solution: Use H(k|M) as IV for next f iteration in H()

5

A Better MAC

• Objectives

• Use available hash functions without modification

• Easily replace embedded hash function as more secure
ones are found

• Preserve original performance of hash function

• Easy to use

6

HMAC

• Attacker cannot extend MAC as
before
• Try it out!

7

(from Stallings, Crypto and Net Security)

= 0x363636…

= 0x5C5C5C…

precomputed

H(k⊕ipad || M)H(k⊕opad ||)

hash1

HMAC(k, M)

hash2

Basic truths of cryptography

• Cryptography is not frequently
the source of security
problems

• Algorithms are well known and
widely studied

• Vetted through crypto
community

• Avoid any “proprietary”
encryption

• Claims of “new technology” or
“perfect security” are almost
assuredly snake oil

8

Building systems/apps with
cryptography

• Use quality libraries

• SSLeay, cryptolib, openssl

• Find out what cryptographers think of a
package before using it

• Code review like crazy

• Educate yourself on how to use library

• Understand caveats by original designer and
programmer

9

Encryption and Message
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“network security is fun”,
MACk2(“network security is fun!”)}}

10

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Without knowing k1, Eve can’t read Alice’s message.

What’s the hard
part?

Private-key crypto is like a door lock

11

Why?

Public Key Crypto
(10,000 ft view)

12

• Separate keys for encryption and decryption

• Public key: anyone can know this

• Private key: kept confidential

• Anyone can encrypt a message to you using your
public key

• The private key (kept confidential) is required to
decrypt the communication

• Alice and Bob no longer have to have a priori shared a
secret key

Public Key Cryptography

• Each key pair consists of a public and
private component: k+ (public key), k-

(private key)

• Public keys are distributed (typically)
through public key certificates

• Anyone can communicate secretly with
you if they have your certificate

13

RSA
(Rivest, Shamir, Adelman)

• The dominant public key
algorithm

• The algorithm itself is
conceptually simple

•Why it is secure is very
deep (number theory)

•Uses properties of
exponentiation modulo a
product of large primes

"A method for obtaining Digital
Signatures and Public Key
Cryptosystems“, Communications of

the ACM, Feb. 1978.

14

Modular Arithmetic
• Integers Zn = {0, 1, 2, ..., n-1}

• x mod n = remainder of x divided by n

• 5 mod 13 = 5

• 13 mod 5 = 3

• y is modular inverse of x iff xy mod n = 1

• E.g. Z11 -> 4 is inverse of 3, 5 is inverse of 9, 7 is inverse of 8

• If n is prime, then Zn has modular inverses for all integers
except 0

15

Euler’s Totient Function

• coprime: having no common positive factors other than 1 (also
called relatively prime)

• 16 and 25 are coprime

• 6 and 27 are not coprime

• Euler’s Totient Function: Φ(n) = number of integers less than
or equal to n that are coprime with n

where product ranges over distinct primes dividing n

• If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

• If m is prime, then Φ(m) = m - 1
16

Euler’s Totient Function

17

If m and n are coprime, then Φ(mn) = Φ(m)Φ(n)

If m is prime, then Φ(m) = m - 1

For primes and co-primes:

RSA Key Generation

18

1. Choose distinct primes p and q

2. Compute n = pq

3. Compute Φ(n) = Φ(pq) =
Φ(p)Φ(q)= (p-1)(q-1)

4. Randomly choose 1<e< Φ(pq)
such that e and Φ(pq) are
coprime. e is the public key
exponent

5. Compute d=e-1 mod(Φ(pq)).
d is the private key exponent

Example:

let p=3, q=11

n=33

Φ(pq)=(3-1)(11-1)=20

let e=7

ed mod Φ(pq) = 1

7d mod 20 = 1

d = 3

RSA Encryption/Decryption

• Public key k+ is {e,n} and private key k- is {d,n}

• Encryption and Decryption

Ek+(M) : ciphertext = plaintexte mod n

Dk-(ciphertext) : plaintext = ciphertextd mod n

• Example

• Public key (7,33), Private Key (3,33)

• Plaintext: 4

• E({7,33},4) = 47 mod 33 = 16384 mod 33 = 16

• D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4

19

20

Is RSA Secure?

• {e,n} is public information

• If you could factor n into p*q, then

• could compute (n) =(p-1)(q-1)

• could compute d = e-1 mod (n)

•would know the private key <d,n>!

• But: factoring large integers is hard!

• classical problem worked on for centuries; no
known reliable, fast method

21

Security (Cont’d)
• At present, key sizes of 1024 bits are considered

to be secure, but 2048 bits is better

• Tips for making n difficult to factor

1.p and q lengths should be similar (ex.: ~500
bits each if key is 1024 bits)

2.both (p-1) and (q-1) should contain a “large”
prime factor

3.gcd(p-1, q-1) should be “small”

4.d should be larger than n1/4

RSA
• Most public key systems use at least 1,024-bit keys

• Key size not comparable to symmetric key algorithms

• RSA is much slower than most symmetric crypto algorithms

• AES: ~161 MB/s

• RSA: ~82 KB/s

• This is too slow to use for modern network communication!

• Solution: Use hybrid model

22

Hybrid Cryptosystems
• In practice, public-key cryptography is used to secure and

distribute session keys.

• These keys are used with symmetric algorithms for
communication.

• Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

• Receiver decrypts the message to recover the session key.

• Both encrypt/decrypt their communications using the
same key.

• Key is destroyed in the end.

23

Hybrid Cryptosystems

24

Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek(“Network security is fun!”)

(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Public Key Cryptography

• Each key pair consists of a public and
private component: k+ (public key), k-

(private key)

25

What happens if we flip the order?

Encryption using private key

• Encryption and Decryption

Ek-(M) : ciphertext = plaintextd mod n

Dk+(ciphertext) : plaintext = ciphertexte mod n

• E.g.,

• E({3,33},4) = 43 mod 33 = 64 mod 33 = 31

• D({7,33},31) = 317 mod 33 = 27,512,614,111 mod 33
= 4

• Q: Why encrypt with private key?

• Non Repudiation!

26

Digital Signatures
• A digital signature serves the same purpose as a real

signature.

• It is a mark that only sender can make

• Other people can easily recognize it as belonging to the
sender

• Digital signatures must be:

• Unforgeable: If Alice signs message M with signature S, it is
impossible for someone else to produce the pair (M, S).

• Authentic: If Bob receives the pair (M, S) and knows Alice’s
public key, he can check (“verify”) that the signature is really
from Alice

• Example: Code signing
27

How can Alice sign a digital
document?

• Digital document: M

• Since RSA is slow, hash M to compute digest: m = h(M)

• Signature: Sig(M) = Ek-(m) = md mod n

• Since only Alice knows k-, only she can create the signature

• To verify: Verify(M,Sig(M))

• Bob computes h(M) and compares it with Dk+(Sig(M))

• Bob can compute Dk+(Sig(M)) since he knows k+ (Alice’s public key)

• If and only if they match, the signature is verified (otherwise,
verification fails)

28

Putting it all together

29

Alice Bob

Src = Alice, Dest = Bob
Msg = EB+(k), Ek(m, EA-(h(m)))

(A+, A-) is Alice’s long-term public-private key pair.
(B+,B-) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

Define m = “Network security is fun!”

Birthday Attack
and Signatures
• Since signatures depend on

hash functions, they also
depend on the hash function’s
collision resistance

• Don’t use MD5, and start
moving away from SHA1

30(from Stallings, Crypto and Net Security)

Properties of a
Digital Signature

• No forgery possible: No one can forge a message
that is purportedly from Alice

• Authenticity check: If you get a signed message you
should be able to verify that it’s really from Alice

• No alteration/Integrity: No party can undetectably
alter a signed message

• Provides authentication, integrity, and non-
repudiation (cannot deny having signed a signed
message)

31

Non-Repudiation

32

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
MACk(“network security is fun!”)}

Alice Bob

Src = Alice, Dest = Bob
Msg = {“network security is fun”,
EA-(h(“network security is fun!”))}

Which of these
offer non-
repudiation?

MAC

Public Key Crypto
(10,000 ft view)

33

• Separate keys for encryption and decryption

• Public key: anyone can know this

• Private key: kept confidential

• Anyone can encrypt a message to you using your public key

• The private key (kept confidential) is required to decrypt the
communication

• Alice and Bob no longer have to have a priori shared a secret key

Problem? YES. How do we know if Alice’s key is really Alice’s?

But how do we verify we’re
using the correct public key?

34

Alice

Bob’s public key is . Trust me.

Not Bob

Short
answer: We

can’t.

35

It’s turtles all
the way down.

Why not just
use a database?

• Every user has his/her own public key and private key.

• Public keys are all published in a database.

• Alice gets Bob’s public key from the database

• Alice encrypts the message and sends it to Bob using
Bob’s public key.

• Bob decrypts it using his private key.

• What’s the problem with this approach?

36

Solving the
Turtles Problem
• We need a trust anchor

• there must be someone with
authority

• requires a priori trust

• Solution: form a trust
hierarchy

• “I believe X because...”

• “Y vouches for X and...”

• “Z vouches for Y and...”

• “I implicitly trust Z.”

37

Browser
Certificate

38

What’s a certificate?
• A certificate …

• … makes an association between an identity
and a private key

• … contains public key information {e,n}

• … has a validity period

• … is signed by some certificate authority (CA)

• … identity may have been vetted by a
registration authority (RA)

• People trust CA (e.g., Verisign) to vet identity

39

Why do I trust the certificate?

• A collections of “root” CA certificates (self-signed)

•… baked into your browser

•… vetted by the browser manufacturer

•… supposedly closely guarded

• trust anchor

• Root certificates used to validate certificate

•Vouches for certificate’s authenticity

40

41

Public Key
Infrastructure

•Hierarchy of keys used to authenticate
certificates

•Requires a root of trust (i.e., a trust anchor)

43

What is a PKI?
• Rooted tree of

CAs

• Cascading
issuance

• Any CA can
issue cert

• CAs issue certs
for children

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …
44

*

*.usf.edu

*.cs.
usf.
edu

*.chase.com

Certificate Validation

… … …

Root

CA1 CA2 CA3

CA11 CA12 CA21 CA22CA1n

Cert11a Cert11b Cert11c … … … …

Certificate

Signature

45

*

*.usf.edu

*.cs.usf.edu

PKIs in Reality

46

Obtaining a Certificate
1.Alice has some identity document AID and generates a keypair (A-,

A+)

2.A → CA : {A+, AID}, Sig(A-, {A+, AID})

• CA verifies signature -- proves Alice has A-

• CA may (and should!) also verify AID offline

3.CA signs {A+, AID} with its private key (CA-)

• CA attests to binding between A+ and AID

4.CA → A : {A+, AID}, Sig(CA-, {A+, AID})

• this is the certificate; Alice can freely publish it

• anyone who knows CA+ (and can therefore validate the CA’s
signature) knows that CA “attested to” {A+, AID}

• note that CA never learns A-

47

48

• Any CA may sign any certificate

• Browser weighs all root CAs equally

• Q: Is this problematic?

49

The DigiNotar Incident

DigiNotar Incident

• DigiNotar is a CA based in
the Netherlands that is
(well, was) trusted by
most OSes and browsers

• July 2011: Issued fake
certificate for gmail.com
to site in Iran that ran
MitM attack...

• ... this fooled most
browsers, but...

50

DigiNotar Incident

51

• As added security
measure, Google
Chrome hardcodes
fingerprint of
Google’s certificate

• Since DigiNotar
didn’t issue
Google’s true
certificate, this
caused an error
message in
Chrome

How secure is the verifier?

• What happens if attacker is able to insert his
public root CA key to the verifier’s list of trusted
CAs?

• More generally, what are the consequences if the
verifier is compromised?

• Q: What’s the consequences for IoT devices/apps?

52

The End

53

	Default Section
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Class Notes
	Slide 3: From Last Class
	Slide 4: General Structure of Hash
	Slide 5: Message Extension Attack
	Slide 6: A Better MAC
	Slide 7: HMAC
	Slide 8: Basic truths of cryptography
	Slide 9: Building systems/apps with cryptography
	Slide 10: Encryption and Message Authenticity

	Public Key crypto
	Slide 11: Private-key crypto is like a door lock
	Slide 12: Public Key Crypto (10,000 ft view)
	Slide 13: Public Key Cryptography

	RSA
	Slide 14: RSA (Rivest, Shamir, Adelman)
	Slide 15: Modular Arithmetic
	Slide 16: Euler’s Totient Function
	Slide 17: Euler’s Totient Function
	Slide 18: RSA Key Generation
	Slide 19: RSA Encryption/Decryption
	Slide 20: Is RSA Secure?
	Slide 21: Security (Cont’d)

	Hybrid Cryptosystems
	Slide 22: RSA
	Slide 23: Hybrid Cryptosystems
	Slide 24: Hybrid Cryptosystems

	Digital Signature
	Slide 25: Public Key Cryptography
	Slide 26: Encryption using private key
	Slide 27: Digital Signatures
	Slide 28: How can Alice sign a digital document?
	Slide 29: Putting it all together
	Slide 30: Birthday Attack and Signatures
	Slide 31: Properties of a Digital Signature
	Slide 32: Non-Repudiation

	Trust Anchor
	Slide 33: Public Key Crypto (10,000 ft view)
	Slide 34: But how do we verify we’re using the correct public key?
	Slide 35: Short answer: We can’t.
	Slide 36: Why not just use a database?
	Slide 37: Solving the Turtles Problem

	PKI and Certificates
	Slide 38: Browser Certificate
	Slide 39: What’s a certificate?
	Slide 40: Why do I trust the certificate?
	Slide 41
	Slide 42
	Slide 43: Public Key Infrastructure
	Slide 44: What is a PKI?
	Slide 45: Certificate Validation
	Slide 46: PKIs in Reality
	Slide 47: Obtaining a Certificate
	Slide 48
	Slide 49: The DigiNotar Incident
	Slide 50: DigiNotar Incident
	Slide 51: DigiNotar Incident
	Slide 52: How secure is the verifier?
	Slide 53: The End

