CIS 4930:
Secure loT

Lecture 5

Prof. Kaushal Kafle

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes

® Required to submit the finalized project for your team so
meet with me asap to do that!

® Teams that have met -> submit the finalized proposal and
begin work!

® Midterm date: 10/15

From Last Class

® Message Authentication Codes (MAC):

® Generate and send a value computed using the original
message and a secret key

® Provides authenticity and integrity

® Hash functions:
® One-way function to generate fixed-length hash (or digest)
® One of the use-cases: Generating MACs!

General Structure of Hash

Yo 61 Yr1
b b b
f f f > 84}
IV = n n n n
—< e o o —r
o CV; CVi_
IV = Initial value = number of input blocks
CV; = chaining variable n = length of hash code
Y; = ithinput block b = length of input block
f = compression algorithm

(from Stallings, Crypto and Net Security)

Message Extension Attack

® Why is MAC,(M) = H(k|M) bad?
® How can Eve append M’ to M?
® Goal: compute H(k|M |M’) without knowing k
® Solution: Use H(k|M) as IV for next f iteration in H()

A Better MAC

® Objectives
® Use available hash functions without modification

® Easily replace embedded hash function as more secure
ones are found

® Preserve original performance of hash function
® Easy to use

HMAC

HMAC(k, M)

!

H(kBopad | | H(kDipad || M))

dash2 - hashl

® Attacker cannot extend MAC as
before

® Tryitout!

I

b bits

» &

b bits

K" ipad & 0x363636...

I

'y

P <

>

Si

]E(()

Y1

v

opad3 0x5C5C5C

+ n bits

Kt
— Lz |

!

v

Hash

n bits

o H(S; 1| M)

pad to b bits

A 4

v

So
Iv n bi':ts

...

Hash

n bits
] HMAC(K, M)

(from Stallings, Crypto and Net Security)

b bits

Yia

Basic truths of cryptography

® Cryptography is not frequently
the source of security
problems

® Algorithms are well known and
widely studied

Vetted through crypto
community

Avoid any “proprietary”
encryption

Claims of “new technology” or
“perfect security” are almost
assuredly snake oil

Building systems/apps with
cryptography

® Use quality libraries
® SSLeay, cryptolib, openssl

® Find out what cryptographers think of a
package before using it

® Code review like crazy

® Educate yourself on how to use library

® Understand caveats by original designer and
programmer

Encryption and Message

Authenticity
rc = Alice, Dest = Bob WhaT'S The har'd

sg = Ex{{"network security is fun”,

ACk2("network security is funl")}} pa r'.r?

2 8

6;{, S

Alice Eve

Without knowing k1, Eve can’t read Alice’s message.

—

Without knowing k2, Eve can’t compute a valid
MAC for her forged message.

Private-key crypto is like a door lock

Public Key Crypto
(10,000 ft view)

® Separate keys for encryption and decryption

® Public key: anyone can know this
® Private key: kept confidential

® Anyone can encrypt a message to you using your
public key

® The private key (kept confidential) is required to
decrypt the communication

® Alice and Bob no longer have to have a priori shared a
secret key

Public Key Cryptography

® Each key pair consists of a public and
private component: k™ (public key), k
(private key)

Dy (Ei+(m)) =m

® Public keys are distributed (typically)
through public key certificates

® Anyone can communicate secretly with
you if they have your certificate

RSA

(Rivest, Shamir, Adelman)

® The dominant public key
algorithm

® The algorithm itself is
conceptually simple

® Why it is secure is very
deep (number theory)

® Uses properties of
exponentiation modulo a
product of large primes

"A method for obtaining Digital
Signatures and Public Key
Cryptosystems”, Communications of

the ACM, Feb. 1978.

Modular Arithmetic

® IntegersZn=1{0, 1, 2, ..., n-1}

® x mod n = remainder of x divided by n
® 5mod13=5
® 13mod5=3

® yis modular inverse of x iff xy mod n =1
® E.g.Zu1->4is inverse of 3, 5is inverse of 9, 7 is inverse of 8

® If nis prime, then Z» has modular inverses for all integers
except O

Euler’s Totient Function

® coprime: having no common positive factors other than 1 (also

called relatively prime)
® 16 and 25 are coprime
® 6 and 27 are not coprime

® Euler’s Totient Function: ®(n) = number of integers less than
or equal to n that are coprime with n

1
®(n)=n-[[1-2)
o=,

where product ranges over distinct primes dividing n

® If m and n are coprime, then ®(mn) = ®(m)D(n)

® If mis prime, then ®(m)=m -1

Euler’s Totient Function

1
o(n) =n-[J0-)

pln

®(18) = ¢(3%-2') = 18(1 — %)(1 —~ %) =6

For primes and co-primes:

If m and n are coprime, then ®(mn) = ®(m)D(n)

If m is prime, then ®(m)=m-1

B WPNE

RSA Key Generation

. Choose distinct primes p and g
. Compute n = pq
. Compute ®O(n) = O(pq) =

O(p)Dd(a)= (p-1)(g-1)

. Randomly choose 1<e< ®(pq)

such that e and ®(pq) are
coprime. e is the public key
exponent

. Compute d=e* mod(®(pq)).

d is the private key exponent

ExamEIe:

let p=3, q=11
n=33

®(pg)=(3-1)(11-1)=20

let e=7

ed mod ®(pqg) =1
7d mod 20 =1
d=3

RSA Encryption/Decryption

® Public key k* is {e,n} and private key kis {d,n}
® Encryption and Decryption
E..(M) : ciphertext = plaintext® mod n
D, (ciphertext) : plaintext = ciphertext? mod n
® Example
® Public key (7,33), Private Key (3,33)

® Plaintext: 4

® £({7,33},4) = 47 mod 33 = 16384 mod 33 = 16
® D({3,33},16) = 163 mod 33 = 4096 mod 33 = 4

Is RSA Secure?

® {e,n}is public information
® If you could factor n into p*q, then
® could compute ¢(n) =(p-1)(g-1)

® could compute d = e mod ¢(n)
® would know the private key <d,n>!
® But: factoring large integers is hard!

® classical problem worked on for centuries; no
known reliable, fast method

20

Security (Cont’ d)

® At present, key sizes of 1024 bits are considered
to be secure, but 2048 bits is better

® Tips for making n difficult to factor

1 . p and g lengths should be similar (ex.: ~500
bits each if key is 1024 bits)

2 .both (p-1) and (g-1) should contain a “large”
prime factor

3 .gcd(p-1, g-1) should be “small”
4. d should be larger than n1/4

21

RSA

® Most public key systems use at least 1,024-bit keys
® Key size not comparable to symmetric key algorithms
® RSA is much slower than most symmetric crypto algorithms
® AES: ~161 MB/s
® RSA: ~82 KB/s
® This is too slow to use for modern network communication!

® Solution: Use hybrid model

22

Hybrid Cryptosystems

® In practice, public-key cryptography is used to secure and
distribute session keys.

® These keys are used with symmetric algorithms for
communication.

® Sender generates a random session key, encrypts it using
receiver’s public key and sends it.

® Receiver decrypts the message to recover the session key.

® Both encrypt/decrypt their communications using the
same key.

® Key is destroyed in the end.

Hybrid Cryptosystems

rc = Alice, Dest = Bob
sg = Ee+(k), Ex("Network security is fun!")

2

Alice

(B*,B’) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

24

Public Key Cryptography

® Each key pair consists of a public and
private component: k™ (public key), k
(private key)

Dy (Ei+(m)) =m

What happens if we flip the order?

Encryption using private key

® Encryption and Decryption
E. (M) : ciphertext = plaintext® mod n
D,.(ciphertext) : plaintext = ciphertext® mod n

® Eg,
® E({3,33},4)=43mod 33 =64mod33=31

® D({7,33},31) =31 mod 33 =27,512,614,111 mod 33
=4

® Q: Why encrypt with private key?

® Non Repudiation!

Digital Signatures

® A digital signature serves the same purpose as a real
signature.

® It is a mark that only sender can make

® Other people can easily recognize it as belonging to the
sender

® Digital signatures must be:

® Unforgeable: If Alice sighs message M with signature S, it is
impossible for someone else to produce the pair (M, S).

® Authentic: If Bob receives the pair (M, S) and knows Alice’s
public key, he can check (“verify”) that the signature is really

from Alice

® Example: Code signing

How can Alice sign a digital
document?

® Digital document: M
® Since RSA is slow, hash M to compute digest: m = h(M)
® Signature: Sig(M)=E,.(m)=m%modn
® Since only Alice knows k-, only she can create the signature
® To verify: Verify(M,Sig(M))
® Bob computes h(M) and compares it with D, (Sig(M))
® Bob can compute D,,(Sig(M)) since he knows k* (Alice’s public key)

® If and only if they match, the signature is verified (otherwise,
verification fails)

Putting it all together
Define m = “Network security is fun!”
Src = Alice, Dest = Bob
. [Msg = Ee+(k), Ex(m, Ea-(h(m))) J

R

(A*, A’) is Alice’s long-term public-private key pair.
(B*,B7) is Bob’s long-term public-private key pair.
k is the session key; sometimes called the ephemeral key.

29

Birthday Attack
and Signatures

® Since signatures depend on
hash functions, they also
depend on the hash function’s
collision resistance

® Don’t use MDS5, and start
moving away from SHA1

Dear Anthony,

[This letter is) X [you to] [Mr. P.
| T am writing | to introduce \iq youf |-- BAlfred |__

new chief X our
Barton, the newly appointed| |senior jewellery buyer for jiye
European] [area (will take) the
Northern | gpyrope | |division Hehas taken| ©OVer |._-
all

watches and jewellery}

responsibility for {the whole of} our interests in {jewellery and watches

i [area | afford X every may need
in the |region| - Please give him all the help he needs

seek out modern | . [top
to find the most up to datej lines for the 1high end of the

empowered
authorized

samples

specimens} of the

market. He is { } to receive on our behalf {

[latest] [watch and jewellery up | limit
|newest| |jewellery and watch products, subject/ *° 2 \maximum

carr

of ten thousand dollars. He will {holg} a signed copy of this {

letter
document

. . . . X . X appended
as proof of identity. An order with his signature, which is j,ttached

above

} you to charge the cost to this company at the {head officej

authorizes
allows

fully) level i) .
address. We - expect that our jy51ume of orders will increase in
following trust X X be
the next year and hope that the new appointment will prove

advantageous
an advantage to both our companies.

Figure 11.7 A Letter in 2%7 Variations
(from Stallings, Crypto and Net Security)

Properties of a
Digital Signature

No forgery possible: No one can forge a message
that is purportedly from Alice

Authenticity check: If you get a signed message you
should be able to verify that it’s really from Alice

No alteration/Integrity: No party can undetectably
alter a signed message

Provides authentication, integrity, and non-

repudiation (cannot deny having signed a signed
message)

Non-Repudiation

rc = Alice, Dest = Bob
sg = {"network security is fun", MAC
ACk("network security is fun!)} :

Which of these

: - offer non-
rc = Alice, Dest = Bob) i
sg = {"neftwork security is fun", repu diation?

; A A-(h("network security is fun!"))}

|

S5 > < v

Public Key Crypto

(10,000 ft view)

® Separate keys for encryption and decryption

® Public key: anyone can know this
® Private key: kept confidential
® Anyone can encrypt a message to you using your public key

® The private key (kept confidential) is required to decrypt the
communication

® Alice and Bob no longer have to have a priori shared a secret key

Problem? YES. How do we know if Alice’s key is really Alice’s?

But how do we verify we're
using the correct public key?

Bob's public key is K+ Tr'us‘r me.

*_‘y__%

Ab,ce/ Not Bol-

Short
answer: We
can’t.

It’s turtles all
the way down.

35

Why not just
use a database?

Every user has his/her own public key and private key.
Public keys are all published in a database.
Alice gets Bob’s public key from the database

Alice encrypts the message and sends it to Bob using
Bob’s public key.

Bob decrypts it using his private key.
What's the problem with this approach?

36

Solving the
Turtles Problem

® We need a trust anchor

® there must be someone with
authority

® requires a priori trust

® Solution: form a trust
hierarchy

® “ pelieve X because..”

® “yvouches for X and..”
“Z vouches for Y and...”

“I'implicitly trust Z.”

37

Browser

Certificate

E] Class 3 public Primary Certification Authority
- &l WeriSign Class 3 Public Primary Certification Authority - G5

O =3 VeriSign Class 3 International Server CA - G3

L =) www.chase.com

Y

|| _‘é Jﬂ Internet

6 e el

£ tsactirind

e

www.chase.com

Issued by: VeriSign Class 3 International Server CA - G3
Expires: Thursday, August 16, 2012 7:59:59 PM ET

v Details

@ This certificate is valid

Country US

State/Province New Jersey

Locality Jersey City

Organization JPMorgan Chase

Organizational Unit CIG

Common Name www.chase.com

Country US

Organization WeriSign, Inc.

Organizational Unit WVeriSign Trust Network

Organizational Unit Terms of use at https:/ fwww.verisign.com/rpa (c)10

Common Name VeriSign Class 3 International Server CA - G3

Serial Number 61 5C 33 2965 09 08 60 A4 E6 B2 5000 F6 22 FO

Version 3

Signature Algorithm SHA-1 with R53& Encryption (1 2 840 1135491 15)

Parameters none

Mot Valid Before Tuesday, August 16, 2011 8:00:00 PM ET

Not

Valid After Thursday, August 16, 2012 7:59:59 PM ET

oK

38

What’s a certificate?

® A certificate ...

® .. makes an association between an identity
and a private key

® .. contains public key information {e,n}

® .. has a validity period

® .. issigned by some certificate authority (CA)

®

... identity may have been vetted by a
registration authority (RA)

® People trust CA (e.g., Verisign) to vet identity

Why do | trust the certificate?

® A collections of “root” CA certificates (self-signed)
® ... baked into your browser
® ... vetted by the browser manufacturer

® ... supposedly closely guarded

® trust anchor
® Root certificates used to validate certificate
® Vouches for certificate’s authenticity

Certificate Manager

{ Your Certificates People Servers Authorities Others 1

You have certificates on file that identify these certificate authorities:

Certificate Name Security Device =
¥ The Go Daddy Group, Inc. =
Go Daddy Secure Certification Authority Software Security Device
Go Daddy Class 2 CA Builtin Object Token
¥ The USERTRUST Network
Metwork Solutions Certificate Authority Software Security Device
Register.com CA 551 Services (OV) Software Security Device
UTH-USERFirst-Hardware Builtin Object Token
UTN - DATACorp SGC Builtin Object Token
UTN-USERFirst-Network Applications Builtin Object Token
UTN-USERFirst-Client Authentication and Email Builtin Object Token
UTN-USERFirst-Object Builtin Object Token
¥ Turkiye Bilimsel ve Teknolojik Arastirma Kurumu...
TUBITAK UEKAE Kik Sertifika Hizmet Saglayici... Builtin Object Token
¥ TURKTRUST Bilgi lletisim ve Bilisim Giwenligi Hiz...
TURKTRUST Elektronik Sertifika Hizmet Sadlay... Builtin Object Token
¥ University of Pennsylvania
DSL CA Authority Software Security Device
¥ Unizeto Sp. z 0.0.
Certum CA, Builtin Object Token []
¥ ValiCert, Inc.
RSA Public Root CA vl Software Security Device
http:/ fwww valicert.com Builtin Object Token e
htto: / fwwe valicert.com Builtin Obiect Token 1
View... ~ Edit... [Import... j ~ Export... _ Delete...

41

%

00 DPrivawarmr X N

€& - C [Xhips//www.csc.ncsu.edu el ¢ I v I

Your connection is not private

Attackers might be trying to steal your information from www.csc.ncsu.edu (for
example, passwords, messages, or credit cards).

[] Automatically report details of possible security incidents to Google. Privacy policy

Advanced Back to safety

Public Key
Infrastructure

®Hierarchy of keys used to authenticate
certificates

®Requires a root of trust (i.e., a trust anchor)

What is a PKI?

® Rooted tree of
CAs

® Cascading *

issuance @)

® AnyCA can
issue cert *.usf.edu * chase.com
® CAs issue certs @ @
for children CA3
*.cs.
usf.
edu

@p CA2)---

Certificate Validation
:am
* usf.edu @ @ CA

= " CAfd CAL> CATh CAZE- Qi
(Gory Gy G

PKls in Reality

Obtaining a Certificate

1. Alice has some identity document A'® and generates a keypair (A,
A*)
2.A>CA: {A*, A} Sig(A-, {A*, AD})
* CA verifies signature -- proves Alice has A
* CA may (and should!) also verify A'® offline
3.cA signs {A*, A'°} with its private key (CA)
® CA attests to binding between A+ and AP
4.cA > A:{A+, AP} Sig(CA, {A*, APY)
® this is the certificate; Alice can freely publish it

® anyone who knows CA* (and can therefore validate the CA’s

signature) knows that CA “attested to” {A*, A'°}

® nhote that CA never learns A

® Any CA may sign any certificate
® Browser weighs all root CAs equally

® Q: Is this problematic?

The DigiNotar Incident

(MR a) _
@ Home DigiNotar, Internet T/

% C f © www.diginotar.com Q{k ‘g ¢ @ !m?om Q4

@ SecDocs -" G-Scholar mC-CaI " G-Maps (%) G-Voice G+ G NYT 7% MSNBC \X/ Wiki WQather @ MyAccess » ﬁOther Bookmarks

- -
DlglNOtar HOME | ANNOUNCEMENTS | PRODUCTS | BRANCH SOLUTIONS | ABOUT DIGINOTAR PARTNERS | PROJECTS

agreement
How do you check the identity of someone

DigiNotar®, Internet Trust Provider Announcements

Managed PKI Fo— X
: As independent Internet Trust Service Provider > Publication: rapart FoicIT

SSL Certificates DigiNotar focuses on ensuring the integrity of Click here for the Interim report of Fox-IT
SIM-ID information flow, and legal guarantees for all > Cooperation Dutch government

online information exchange. More information >> Read the press release >>
Signing:Service > DigiNotar reports security incident
DocProof Read the press release >>

LD VASLCCOD

A YASCO COMPANY

NOW

49

DigiNotar Incident

® DigiNotar is a CA based in
the Netherlands that is
(well, was) trusted by
most OSes and browsers

® July 2011: Issued fake
certificate for gmail.com
to site in Iran that ran
MitM attack...

... this fooled most
browsers, but...

50

DigiNotar Incident

® As added security
measure, Google
Chrome hardcodes
fingerprint of A
Google’s certificate

Since DigiNotar
didn’t issue
Google’s true
certificate, this
caused an error
message in
Chrome

51

How secure is the verifier?

® What happens if attacker is able to insert his
public root CA key to the verifier’s list of trusted
CAs?

® More generally, what are the consequences if the
verifier is compromised?

® Q: What’s the consequences for loT devices/apps?

The End

	Default Section
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Class Notes
	Slide 3: From Last Class
	Slide 4: General Structure of Hash
	Slide 5: Message Extension Attack
	Slide 6: A Better MAC
	Slide 7: HMAC
	Slide 8: Basic truths of cryptography
	Slide 9: Building systems/apps with cryptography
	Slide 10: Encryption and Message Authenticity

	Public Key crypto
	Slide 11: Private-key crypto is like a door lock
	Slide 12: Public Key Crypto (10,000 ft view)
	Slide 13: Public Key Cryptography

	RSA
	Slide 14: RSA (Rivest, Shamir, Adelman)
	Slide 15: Modular Arithmetic
	Slide 16: Euler’s Totient Function
	Slide 17: Euler’s Totient Function
	Slide 18: RSA Key Generation
	Slide 19: RSA Encryption/Decryption
	Slide 20: Is RSA Secure?
	Slide 21: Security (Cont’d)

	Hybrid Cryptosystems
	Slide 22: RSA
	Slide 23: Hybrid Cryptosystems
	Slide 24: Hybrid Cryptosystems

	Digital Signature
	Slide 25: Public Key Cryptography
	Slide 26: Encryption using private key
	Slide 27: Digital Signatures
	Slide 28: How can Alice sign a digital document?
	Slide 29: Putting it all together
	Slide 30: Birthday Attack and Signatures
	Slide 31: Properties of a Digital Signature
	Slide 32: Non-Repudiation

	Trust Anchor
	Slide 33: Public Key Crypto (10,000 ft view)
	Slide 34: But how do we verify we’re using the correct public key?
	Slide 35: Short answer: We can’t.
	Slide 36: Why not just use a database?
	Slide 37: Solving the Turtles Problem

	PKI and Certificates
	Slide 38: Browser Certificate
	Slide 39: What’s a certificate?
	Slide 40: Why do I trust the certificate?
	Slide 41
	Slide 42
	Slide 43: Public Key Infrastructure
	Slide 44: What is a PKI?
	Slide 45: Certificate Validation
	Slide 46: PKIs in Reality
	Slide 47: Obtaining a Certificate
	Slide 48
	Slide 49: The DigiNotar Incident
	Slide 50: DigiNotar Incident
	Slide 51: DigiNotar Incident
	Slide 52: How secure is the verifier?
	Slide 53: The End

