
CIS 4930:
Secure IoT

Lecture 4

Prof. Kaushal Kafle

1Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes

2

• Project proposals + team due today!

–Required to visit me personally with your group asap (within the next
week).

• Project has 2 sections:

–Section 1: Focus on understanding an IoT Platform (09/05-10/10)

–Section 2: Security analysis of real-world IoT apps (10/17-12/12)

• Proposed deadline changes:

–Section 1: 09/05 – 10/22

–Section 2: 10/29 10/24 – 12/12

Class Notes

3

• Homework 2 assigned today after class. Due on 09/19

• Bug bounty:

– Include a short paper summary when you pitch your bug

–The paper proposes X. They perform Y. The results/findings are Z.

• Meet the TA - Mohamed Mossad

• Email: mohamed15@usf.edu

• Office hours: Mondays 1-2pm

• Office space: Link

mailto:mohamed15@usf.edu
https://teams.microsoft.com/l/meetup-join/19%3ameeting_NTM0NmNkN2ItMjU0Ni00YzkzLWE3NTktZTkxZThlOTFmNzAw%40thread.v2/0?context=%7b%22Tid%22%3a%22741bf7de-e2e5-46df-8d67-82607df9deaa%22%2c%22Oid%22%3a%22bc46bd21-20d0-484d-9a18-9e0099423012%22%7d

Block ciphers: Generic Block
Encryption

• Converts one input plaintext block of fixed size b bits to an
output ciphertext block also of b bits

• Benefits of large b? of short b?
– Think cryptanalysis!

• Block and key size are separate parameters
• E.g., AES, DES

4

block 0

Encryption
key

block 1 block 2 …

block 0 block 1 block 2 …

plaintext

ciphertext

Two Principles for Cipher Design

• Confusion: Make the relationship between the
<plaintext, key> input and the <ciphertext> output as
complex (non-linear) as possible
– Mainly accomplished by substitution

• Diffusion: Spread the influence of each input bit across
many output bits
– Mainly accomplished by permutation

• Idea: use multiple, alternating permutations and
subsitutions
– S→P→S→P→S→... or P→S→P→S→P→...
– Does it have to alternate?, e.g.,

S→S→S→P→P→P→S→S→...

5
-> Stream ciphers do not have diffusion!

Why?

Two Principles for Cipher Design

Two Principles for Cipher Design

block 0

Encryption
key

block 1 block 2 …

block 0 block 1 block 2 …

plaintext

ciphertext

S→P→S→P→S→...

• Can I predictably change the plaintext, by
changing the ciphertext?

– No. The relationship is too complex.

Modes of Operation

8

• Most ciphers work on blocks of fixed (small) size

• How to encrypt long messages?

• Modes of operation

– ECB (Electronic Code Book)

– CBC (Cipher Block Chaining)

– CTR (Counter)

– (there are many more; we will look at 3 for a bare
minimum understanding)

Issues for Block Chaining Modes

• Information leakage: Does it reveal info about the plaintext
blocks?

• Ciphertext manipulation: Can an attacker modify ciphertext
block(s) in a way that will produce a predictable/desired
change in the decrypted plaintext block(s)?
– Note: assume the structure of the plaintext is known, e.g., first

block is employee #1 salary, second block is employee #2 salary,
etc.

• Parallel/Sequential: Can blocks of plaintext (ciphertext) be
encrypted (decrypted) in parallel?

• Error Propagation: If there is an error in a plaintext
(ciphertext) block, will there be an encryption (decryption)
error in more than one ciphertext (plaintext) block?

9

Electronic Code Book (ECB)

• The easiest mode of operation; each block is
independently encrypted

10

E E E E
Key

128

M1 M2 M3 M4

128 46 +
padding

128

Plaintext 

C1 C2 C3 C4

128 128 128128

Ciphertext 

ECB Decryption

• Each block is independently decrypted

11

D D D D

C1 C2 C3 C4

M1 M2 M3 M4

Key

128 128 128128

128 128
46 +
padding

128

ECB Issues
• Information leaks: two ciphertext blocks that are

the same

• Manipulation: switch ciphertext with predictable
results on plaintext (e.g., shuffle).

• Parallel: yes

• Error Propagate: no

12
Plaintext ECB Other modes

13

Cipher Block Chaining (CBC)

• Chaining dependency: each ciphertext block depends on all
preceding plaintext blocks

15

Initialization
Vector

E E E E
Key

C1 C2 C3 C4

128 128 128128

M1 M2 M3 M4

128 128 46 +
padding

128

Initialization Vectors

• Initialization Vector (IV)

– Used along with the key; not secret

– For a given plaintext, changing either the key, or
the IV, will produce a different ciphertext

– Why is that useful?

• IV generation and sharing

– Random; may transmit with the ciphertext

– Incremental; predictable by receivers

16

CBC Decryption

• How many ciphertext blocks does each
plaintext block depend on?

17

D

C1 C2 C3 C4

M1 M2 M3 M4

Initialization
Vector

D D D
Key

128 128 128128

128 128 46 +
padding

128

CBC Properties

• Does information leak?

– Identical plaintext blocks will produce different
ciphertext blocks

• Can ciphertext be manipulated profitably?

– Yes

• Parallel processing possible?

– no (encryption), yes (decryption)

• Do ciphertext errors propagate?

– yes (encryption), a little (decryption)

18

Counter Mode (CTR)

19

E

IV

E E
Key

128

C1 C2 C3

128 128 128

128 128 128

M1 M2 M3

IV++ IV++

20

CTR Mode Properties

• Does information leak?

– Identical plaintext block produce different ciphertext blocks

• Can ciphertext be manipulated profitably
– Yes!

• Parallel processing possible
– Yes (both generating pad and XORing)

• Do ciphertext errors propagate?

– No.

• Allow decryption the ciphertext at any location

– Ideal for random access to ciphertext

What encryption
does and does not

• Does:

– confidentiality

• Doesn’t do:

– data integrity

– source authentication

• Need: ensure that data is not altered and is from
an authenticated source

21

Principals

Alice Bob

Eve

22

Src=Alice, Dest=Bob
Msg = “security is fun!”

Alice Bob

23

Eve

Src=Alice, Dest=Bob
Msg = “security is fun!”

Src=Alice, Dest=Bob
Msg = “security is not fun!”

Man-in-the-Middle (MitM) attack

• For confidentiality, just encrypt.

• How do we ensure integrity?

Message Authentication Codes
(MACs)

24

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence
of bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not be
able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message,
Alice sends

– EK(M,MACK(M)) where EK(X) is the encryption of X using key K

• Proves that M was encrypted (confidentiality and integrity) by
someone who knew K (authenticity)

Why are we sending M?

Message Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = {“security is fun”,
MACk(“security is fun!”)}

25

Src = Alice, Dest = Bob
Msg = {“security isn’t fun!”, ???}

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

Encryption and Message
Authenticity

Alice BobEve

Src = Alice, Dest = Bob
Msg = Ek1{{“security is fun”,
MACk2(“security is fun!”)}}

26

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

Cryptographic Hash Functions

• Hash function h: deterministic one-way function that
takes as input an arbitrary message M (sometimes
called a preimage) and returns as output h(M), a small
fixed length hash (sometimes called a digest)

• Hash functions should have the following two
properties:

– compression: reduces arbitrary length string to fixed
length hash

– ease of computation: given message M, h(M) is easy
to compute

27

Hash functions are usually fairly inexpensive
(i.e., compared with public key cryptography)

28

Why might hashes be useful?

• Message authentication codes (MACs):

– e.g.: MACK(M) = h(K|M)

(but don't do this, use HMAC instead)

• Modification detection codes:

– detect modification of data

– any change in data will cause change in hash

29

Prof. Pedantic proposes the following
hash function, arguing that it offers both
compression and ease of computation.

Why is this a lousy crypto hash function?

• h(M) = 0 if the number of 0s in M is divisible
by 3

• h(M) = 1 otherwise

30

Cryptographic Hash Functions

• Properties of good cryptographic hash functions:

– preimage resistance: given digest y, computationally
infeasible to find preimage x' such that h(x')=y
(also called “one-way property”)

– 2nd-preimage resistance: given preimage x, computationally
infeasible to find preimage x' such that h(x)=h(x')
(also called “weak collision resistance”)

– collision resistance: computationally infeasible to find
preimages i,j such that h(i)=h(j)
(also called “strong collision resistance”)

31

Birthday Attack
• Birthday Paradox: chances that 2+ people share

birthday in group of 23 is > 50%.

• General formulation

– function f() whose output is uniformly distributed over H

possible outputs

– Number of experiments Q(H) until we find a collision is

approximately:

– E.g.,

• Why is this relevant to hash sizes?

32
See: https://betterexplained.com/articles/understanding-the-birthday-paradox/

https://betterexplained.com/articles/understanding-the-birthday-paradox/

Practical
Implications

• Choosing two messages that
have the same hash h(x) =
h(x’) is more practical than
you might think.

• Example attack: secretary is
asked to write a “bad” letter,
but wants to replace with a
“good” letter.
– Boss signs the letter after

reading

33
(from Stallings, Crypto and Net Security)

• Find collision between
2^37 ‘good’ vs 2^37
‘bad’ letters

Some common cryptographic
hash functions

• MD5 (128-bit digest) [don’t use this]

• SHA-1 (160-bit digest) [stop using this*]

• SHA-256 (256-bit digest)

• SHA-512 (512-bit digest)

• SHA-3 [recent competition winner]

34

General Structure of Hash

35

f f
n n

n

IV =

CV0 CV1

b

n

CVL–1

CVLn

b

Y0 Y1 YL–1

IV = Initial value

CVi = chaining variable

Yi = ith input block

f = compression algorithm

L = number of input blocks

n = length of hash code

b = length of input block

Figure 11.8 General Structure of Secure Hash Code

b

f

(from Stallings, Crypto and Net Security)

Message Extension Attack

• Why is MACk(M) = H(k|M) bad?

• How can Eve append M’ to M?

– Goal: compute H(k|M|M’) without knowing k

• Solution: Use H(k|M) as IV for next f iteration
in H()

36

A Better MAC

• Objectives

– Use available hash functions without modification

– Easily replace embedded hash function as more
secure ones are found

– Preserve original performance of hash function

– Easy to use

37

	Security Terms
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Class Notes
	Slide 3: Class Notes

	Block Ciphers - Basic principles
	Slide 4: Block ciphers: Generic Block Encryption
	Slide 5: Two Principles for Cipher Design
	Slide 6: Two Principles for Cipher Design
	Slide 7: Two Principles for Cipher Design

	Modes of Operation
	Slide 8: Modes of Operation
	Slide 9: Issues for Block Chaining Modes
	Slide 10: Electronic Code Book (ECB)
	Slide 11: ECB Decryption
	Slide 12: ECB Issues
	Slide 13
	Slide 15: Cipher Block Chaining (CBC)
	Slide 16: Initialization Vectors
	Slide 17: CBC Decryption
	Slide 18: CBC Properties
	Slide 19: Counter Mode (CTR)
	Slide 20: CTR Mode Properties

	Hashing
	Slide 21: What encryption does and does not
	Slide 22: Principals
	Slide 23
	Slide 24: Message Authentication Codes (MACs)
	Slide 25: Message Authenticity
	Slide 26: Encryption and Message Authenticity
	Slide 27: Cryptographic Hash Functions
	Slide 28: Hash functions are usually fairly inexpensive (i.e., compared with public key cryptography)
	Slide 29: Why might hashes be useful?
	Slide 30: Prof. Pedantic proposes the following hash function, arguing that it offers both compression and ease of computation. Why is this a lousy crypto hash function?
	Slide 31: Cryptographic Hash Functions
	Slide 32: Birthday Attack
	Slide 33: Practical Implications
	Slide 34: Some common cryptographic hash functions

	Basic truths about crypto
	Slide 35: General Structure of Hash
	Slide 36: Message Extension Attack
	Slide 37: A Better MAC

