CIS 4930:

Secure loT

Lecture 4

Prof. Kaushal Kafle

Derived from slides by Adwait Nadkarni, William Enck, Micah Sherr and Patrick McDaniel

Class Notes

® Project proposals + team due today!

—Required to visit me personally with your group asap (within the next
week).

® Project has 2 sections:
—Section 1: Focus on understanding an loT Platform (09/05-10/10)
—Section 2: Security analysis of real-world loT apps (10/17-12/12)
® Proposed deadline changes:
—Section 1: 09/05 — 10/22
—Section 2: 46/29 10/24 - 12/12

Class Notes

® Homework 2 assigned today after class. Due on 09/19
® Bug bounty:
—Include a short paper summary when you pitch your bug

—The paper proposes X. They perform Y. The results/findings are Z.

® Meet the TA - Mohamed Mossad
® Email: mohamed15@usf.edu

® Office hours: Mondays 1-2pm

® Office space: Link

mailto:mohamed15@usf.edu
https://teams.microsoft.com/l/meetup-join/19%3ameeting_NTM0NmNkN2ItMjU0Ni00YzkzLWE3NTktZTkxZThlOTFmNzAw%40thread.v2/0?context=%7b%22Tid%22%3a%22741bf7de-e2e5-46df-8d67-82607df9deaa%22%2c%22Oid%22%3a%22bc46bd21-20d0-484d-9a18-9e0099423012%22%7d

Block ciphers: Generic Block
Encryption

Converts one input plaintext block of fixed size b bits to an
output ciphertext block also of b bits

Benefits of large b? of short b?

— Think cryptanalysis!
Block and key size are separate parameters
E.g., AES, DES

plaintext m m m 0

key .

\ \

ciphertext

Two Principles for Cipher Design

* Confusion: Make the relationship between the
<plaintext, key> input and the <ciphertext> output as
complex (non-linear) as possible

— Mainly accomplished by substitution

* Diffusion: Spread the influence of each input bit across
many output bits
— Mainly accomplished by permutation

* |dea: use multiple, alternating permutations and
subsitutions

— SSPISIPISS... or PSSSPSSSP...

— Does it have to alternate?, e.g.,
S>S>SS>P>P>P->S->S->...

-> Stream ciphers do not have diffusion!
Why?

Two Principles for Cipher Design

» “
s
Zk .
Zh - ﬁ."ﬁﬁﬂ '

BBBBBBB

=2 :

-

.i-l-.
g e

: o
@—- o ‘@ m—

. e— 3
A T I L S BTN S T T
ﬁ =

s By

.

...,N
= A Ilrl
e

o

Two Principles for Cipher Design

plaintext m m m oo

key

ciphertext

* Can | predictably change the plaintext, by
changing the ciphertext?

— No. The relationship is too complex.

Modes of Operation

 Most ciphers work on blocks of fixed (small) size
* How to encrypt long messages?
 Modes of operation

— ECB (Electronic Code Book)

— CBC (Cipher Block Chaining)

— CTR (Counter)

— (there are many more; we will look at 3 for a bare
minimum understanding)

plaintext m @ m cee
key - ¢

¥ ¥ ¥ \
wivisgo 8 block 0 f block 1 §§ block 2 BT

Issues for Block Chaining Modes

Information leakage: Does it reveal info about the plaintext
blocks?

Ciphertext manipulation: Can an attacker modify ciphertext
block(s) in a way that will produce a predictable/desired
change in the decrypted plaintext block(s)?

— Note: assume the structure of the plaintext is known, e.g., first

block is employee #1 salary, second block is employee #2 salary,
etc.

Parallel/Sequential: Can blocks of plaintext (ciphertext) be
encrypted (decrypted) in parallel?

Error Propagation: If there is an error in a plaintext
(ciphertext) block, will there be an encryption (decryption)
error in more than one ciphertext (plaintext) block?

Electronic Code Book (ECB)

Plaintext =

Y

Ciphertext = C;

* The easiest mode of operation; each block is
independently encrypted

10

ECB Decryption

* Each block is independently decrypted

11

ECB Issues

* Information leaks: two ciphertext blocks that are
the same

 Manipulation: switch ciphertext with predictable
results on plaintext (e.g., shuffle).

* Parallel: yes
* Error Propagate: no

Plaintext ECB

4 Tract de la Société Secréte

4:13 Ode to ECB

by Ben Nagy

Oh little one, you’re growing up
You’ll soon be writing C

You’ll treat your ints as pointers
You’ll nest the ternary

You’ll cut and paste from github
And try cryptography

But even in your darkest hour
Do not use ECB

CBC’s BEASTIly when padding’s abused

And CTR’s fine til a nonce is reused

Some say it’s a CRIME to compress then encrypt

Or store keys in the browser (or use javascript)

Diffie Hellman will collapse if hackers choose your g
And RSA is full of traps when e is set to 3

Whiten! Blind! In constant time! Don’t write an RNG!
But failing all, and listen well: Do not use ECB

They’ll say “It’s like a one-time-pad!

The data’s short, it’s not so bad

the keys are long—they’re iron clad

I have a PhD!”

And then you’re front page Hacker News
Your passwords cracked—Adobe Blues.
Don’t leave your penguin showing through,
Do not use ECB

4:13 Ode to ECB by Ben Nagy

Sometimes it can seem like there’s ECB everywhere. ECB on TV,
ECB in music, it's endless. But that doesn’t make it safe. Or right.
So tune out and avoid ECB, no matter what your friends, the TV,
or your favourite cryptographer tells you.

You'll be glad you did!

@natashenka
True Bugs Wailt © #truebugswait

Canadian Joke
Council

Cipher Block Chaining (CBC)

Initialization

—

Vector

* Chaining dependency: each ciphertext block depends on all
preceding plaintext blocks

Initialization Vectors

* |nitialization Vector (IV)
— Used along with the key; not secret

— For a given plaintext, changing either the key, or
the IV, will produce a different ciphertext

— Why is that useful?
* |V generation and sharing

— Random; may transmit with the ciphertext
— Incremental; predictable by receivers

16

CBC Decryption

* How many ciphertext blocks does each
plaintext block depend on?

17

CBC Properties

Does information leak?

— Identical plaintext blocks will produce different
ciphertext blocks

Can ciphertext be manipulated profitably?
— Yes

Parallel processing possible?

— no (encryption), yes (decryption)

Do ciphertext errors propagate?

— yes (encryption), a little (decryption)

18

Counter Mode (CTR)

CTR Mode Properties

Does information leak?

— ldentical plaintext block produce different ciphertext blocks

Can ciphertext be manipulated profitably

— Yes!

Parallel processing possible
— Yes (both generating pad and XORing)

Do ciphertext errors propagate?
— No.

Allow decryption the ciphertext at any location

— ldeal for random access to ciphertext

20

What encryption
does and does not

* Does:
— confidentiality
* Doesn’t do:
— data integrity
— source authentication

e Need: ensure that data is not altered and is from
an authenticated source

Principals

Src=Alice, Dest=Bob
Msg = “security is fun!”

tve

22

Man-in-the-Middle (MitM) attack

Src=Alice, Dest=Bob Src=Alice, Dest=Bob
Msg = “security is fun!” Msg = “security is not fun!”

S

Alice tve

* For confidentiality, just encrypt.

* How do we ensure integrity?

23

Message Authentication Codes
(MACs)

MACs provide message integrity and authenticity

MACk(M) — use symmetric encryption to produce short sequence
of bits that depends on both the message (M) and the key (K)

MACs should be resistant to existential forgery: Eve should not be
able to produce a valid MAC for a message M' without knowing K

To provide confidentiality, authenticity, and integrity of a message,

Alice sends

— Ex(M,MACk(M)) where Ex(X) is the encryption of X using key K

Proves that M was encrypted (confidentiality and integrity) by
someone who knew K (authenticity)

Why are we sending M?

Message Authenticity

rc = Alice, Dest = Bob rc = Alice, Dest = Bob
sg = {"security is fun", sg = {"security isn't funl", 22?7}

ACk("security is fun!")}

' N

>

Alice Eve

Without knowledge of k, Eve can’t compute a valid
MAC for her forged message!

25

Encryption and Message
Authenticity

c = Alice, Dest = Bob
sg = Ex{{"security is fun”,

ACk2("security is fun!")}}

@
7=)

‘T

>

Alice tve
Without knowing k1,
Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message! y

Cryptographic Hash Functions

 Hash function h: deterministic one-way function that
takes as input an arbitrary message M (sometimes
called a preimage) and returns as output h (M), a small
fixed length hash (sometimes called a digest)

* Hash functions should have the following two
properties:

— compression: reduces arbitrary length string to fixed
length hash

— ease of computation: given message M, h (M) is easy
to compute

Hash functions are usually fairly inexpensive

(i.e., compared with public key cryptography)

N openssl speed sha256

Doing sha256 ops for 3s or 16 size blocks: 33515432 sha256 ops n 3.00s

Doing sha256 ops for 3s or 64 size blocks: 29299431 sha256 ops 'n 2.99s

Doing sha256 ops for 3s or 256 size blocks: 19059503 sha256 ops in 3.00s

Doing sha256 ops for 3s or 1024 size blocks: 7433662 sha256 ops in 3.00s

Doing sha256 ops for 3s or 8192 size blocks: 1104810 sha256 ops in 3.00s

Doing sha256 ops for 3s or 16384 size blocks: 559814 sha256 ops in 2.99s

version: 3.3.1

built on: Tue Jun 4 12:53:04 2024 UTC

options: bn(64,64)

compiler: clang —-fPIC -arch arm64 —03 -Wall -DL_ENDIAN -DOPENSSL_PIC -D_REENTRANT
CPUINFO: OPENSSL_armcap=0x987d

The 'numbers' are in 1000s of bytes per second processed.

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 163
sha256 178748.97k 627145.01k 1626410.92k 2537356.63k 3016867.84k 30

ED |

Why might hashes be useful?

 Message authentication codes (MACs):
—e.g.:MACk (M) = h (K|M)
(but don't do this, use HMAC instead)

e Modification detection codes:
— detect modification of data
— any change in data will cause change in hash

Prof. Pedantic proposes the following
hash function, arguing that it offers both
compression and ease of computation.

e h(M) =0 if the number of Os in M is divisible
oy 3

* h(M) =1 otherwise

Why is this a lousy crypto hash function?

Cryptographic Hash Functions

Properties of good cryptographic hash functions:

— preimage resistance: given digest y, computationally
infeasible to find preimage x' such that h(x')=y
(also called “one-way property”)

— 2nd-preimage resistance: given preimage x, computationally
infeasible to find preimage x' such that h(x)=h(x')
(also called “weak collision resistance”)

— collision resistance: computationally infeasible to find
preimages i,j such that h(i)=h(j)
(also called “strong collision resistance”)

31

Birthday Attack

* Birthday Paradox: chances that 2+ people share
birthday in group of 23 is > 50%.

 General formulation

— function () whose output is uniformly distributed over H
possible outputs

— Number of experiments Q(H) until we find a collision is
approximately:

Q(365) ~ 5365 — 23.94

* Why is this relevant to hash sizes?

32

See: https://betterexplained.com/articles/understanding-the-birthday-paradox/

https://betterexplained.com/articles/understanding-the-birthday-paradox/

* Choosing two messages that

Practical
Implications

have the same hash h(x) =
h(x’) is more practical than
you might think.

Example attack: secretary is

asked to write a “bad” letter,

but wants to replace with a
“good” letter.

— Boss signs the letter after
reading

Find collision between
2737 ‘good’ vs 2737
‘bad’ letters

Dear Anthony,

{This letter is

. you to Mr. P.
I am writing to introduce Alfred y__

to you -

new chief X our
Barton, the newly appointed senior jewellery buyer for the

Europeanl J area

(will take
Europe | |division| °

Northern { Helhas taken} over

th el
-

all

!
L
S . watches and jewellery
responsibility for the whole of our interests in

jewellery and watches

area }

. afford . every
in the {region give } im {

may need
all the} help he { }

. Please { needs

seek out modern X top
to find the most up to date lines for the high end of the
. empowered . samples
market. He is authorized to receive on our behalf specimens of the

[latest] [watch and]ewelleryl up limit
|newest| |jewellery and watch]| products, [subject t0 3 \maximum|

carry

. . X letter
of ten thousand dollars. He will {hold} a signed copy of this { }

document

. i i i i . . appended
as proof of identity. An order with his signature, which is | itached
authorizes X above

allows you to charge the cost to this company at the ho.4 office

level

fully
address. We { _ } expect that our {volume

} of orders will increase in

be

trust
prove

followin
g} year and {hope} that the new appointment will {

the { next

{advantageous

an advantage} to both our companies.

Figure 11.7 A Letter in 237 Variations 33
(from Stallings, Crypto and Net Security)

Some common cryptographic

<

nvh O Uunh UM

hash functions
D5 (128-bit digest) [don’t use this]
A-1 (160-bit digest) [stop using this*]
A-256 (256-bit digest)
A-512 (512-bit digest)

A-3 [recent competition winner]

34

General Structure of Hash

Yo 61 Yr1
b b b
n
IV= n f n f n n f CVL
—< e o o —r
o CV; CVi_
IV = Initial value = number of input blocks
CV; = chaining variable n = length of hash code
Y; = ithinput block b = length of input block
f = compression algorithm

(from Stallings, Crypto and Net Security)

Message Extension Attack

* Why is MAC, (M) = H(k| M) bad?
* How can Eve append M’ to M?
— Goal: compute H(k|M|M’) without knowing k

e Solution: Use H(k| M) as IV for next f iteration
in H()

A Better MAC

* Objectives
— Use available hash functions without modification

— Easily replace embedded hash function as more
secure ones are found

— Preserve original performance of hash function

— Easy to use

	Security Terms
	Slide 1: CIS 4930: Secure IoT
	Slide 2: Class Notes
	Slide 3: Class Notes

	Block Ciphers - Basic principles
	Slide 4: Block ciphers: Generic Block Encryption
	Slide 5: Two Principles for Cipher Design
	Slide 6: Two Principles for Cipher Design
	Slide 7: Two Principles for Cipher Design

	Modes of Operation
	Slide 8: Modes of Operation
	Slide 9: Issues for Block Chaining Modes
	Slide 10: Electronic Code Book (ECB)
	Slide 11: ECB Decryption
	Slide 12: ECB Issues
	Slide 13
	Slide 15: Cipher Block Chaining (CBC)
	Slide 16: Initialization Vectors
	Slide 17: CBC Decryption
	Slide 18: CBC Properties
	Slide 19: Counter Mode (CTR)
	Slide 20: CTR Mode Properties

	Hashing
	Slide 21: What encryption does and does not
	Slide 22: Principals
	Slide 23
	Slide 24: Message Authentication Codes (MACs)
	Slide 25: Message Authenticity
	Slide 26: Encryption and Message Authenticity
	Slide 27: Cryptographic Hash Functions
	Slide 28: Hash functions are usually fairly inexpensive (i.e., compared with public key cryptography)
	Slide 29: Why might hashes be useful?
	Slide 30: Prof. Pedantic proposes the following hash function, arguing that it offers both compression and ease of computation. Why is this a lousy crypto hash function?
	Slide 31: Cryptographic Hash Functions
	Slide 32: Birthday Attack
	Slide 33: Practical Implications
	Slide 34: Some common cryptographic hash functions

	Basic truths about crypto
	Slide 35: General Structure of Hash
	Slide 36: Message Extension Attack
	Slide 37: A Better MAC

